

 Navigation

 	
 index

 	
 next |

 	Joxa v0.1.0 documentation

The Joxa Programing Language

Joxa is a small semantically clean, functional Lisp. It is
designed as a general-purpose language encouraging interactive
development and a functional programming style. Like other Lisps, Joxa
treats code as data and has a full (unhygienic) macro system. Joxa has
an advantage over other Lisp in that it runs on the Erlang Virtual
Machine and inherits all of the benifits for concurrency and
distribution provided by that platform.

Contents:

	1. Introduction
	1.1. Examples

	2. Install

	3. Quick Start

	4. The Joxa Language
	4.1. Special Forms

	4.2. Namespaces

	4.3. Functions

	4.4. Type Specs

	5. Standard Library
	5.1. Core

	5.2. Lists

	5.3. Records

	6. Joxa Style Guide
	6.1. Standard Rules

	6.2. General Layout

	6.3. Attribution

	7. Contributing

	8. Getting Help
	8.1. Resources

	9. Frequently Asked Questions
	9.1. What is the difference between Joxa and LFE (both Lisps for the Erlang VM)

	9.2. How Do You Create Mutually Recursive Functions

	9.3. Type Specs are your answer

	9.4. Will compiler.jxa ever be able to use macros?

Indices and tables

	Index

	Search Page

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Joxa v0.1.0 documentation

1. Introduction

Joxa is a Lisp designed to support general programming with good
declarative data description facilities. Joxa is intended to be used
as a powerful, light-weight alternative for Erlang for any program any
system where a language like Erlang is prefered. Joxa is implemented
as a compiler and library, written in itself while still making
extensive use of the Erlang libraries and infrastructure.

Joxa is free software, and is provided as usual with no guarantees, as
stated in its license. Further information is a available on the Joxa
website, www.joxa.org.

1.1. Examples

The very first thing that everyone wants to see when exploring a new
language is what it looks like. So to feed that need lets jump right
into some examples and descriptions.

1.1.1. Sieve of Eratosthenes

Here we see the Sieve of Eratosthenes implemented as a Joxa Namespace

(ns sieve-of-eratosthenes
 (require lists)
 (use (joxa.core :as core :only (!=/2))
 (erlang :only (rem/2 +/2))))

(defn sieve (v primes)
 (case v
 ([] primes)
 ((h . t)
 (sieve (lists/filter (fn (x)
 (!= (rem x h) 0)) t)
 (+ primes 1)))))

(defn+ sieve (v)
 (sieve (lists/seq 2 v) 1))

Now that we have seen the entire namespace lets start breaking it
down

(ns sieve-of-eratosthenes
 (require lists)
 (use (joxa.core :as core :only (!=/2))
 (erlang :only (rem/2 +/2))))

The very first thing that must occur in file is the namespace special
form. You can call a fully qualified macro to create the namespace,
but that macro must create the namespace first. A namespace is
defined with the ns special form.

The ns special form consists of three main parts (we will go into
greater detail later in this document). The first part is the name of
the namespace. Which is an atom that identifies that namespace. Though is not
a requirement its generally a good idea for the namespace name match the file
name.

The second part of the ns special form is the require form. The
require form provides a list of those namespaces that will be used by
the namespace. This is not strictly required (namespaces that are used
in the namespace being defined but not required will be automatically
required). However, it is very good documentation and I encourage
you to require all your namespaces.

The third part is the use form. The use form allow you to import
functions into the namespace. So you do not have to write the fully
qualified name. This is especially useful for functions and macros
defined as operators. Don’t go crazy with it though. It is a spice
that should be used only where it enhances clarity.

Any number of require and use statements can appear in the namespace
in any order.

Next we see the function definition

(defn sieve (v primes)
 (case v
 ([] primes)
 ((h . t)
 (sieve (lists/filter (fn (x)
 (!= (rem x h) 0)) t)
 (+ primes 1)))))

We define a function called sieve that takes two arguments. The
argument v and, next, the argument primes. We then have a
single case expression that forms the body of the function. A case
expression allows the author to do pattern matching on the second
clause of the expression. While he rest of the clauses identify
patterns and what will be evaluate based on the form of the output of
the second clause. In this example, you can see that an empty list
will return the argument primes unchanged while a cons cell will
result in a recursive call of sieve, a call to the erlang module
lists with an anonymous function. You can all see the use of the
functions (not defined in the namespace) that we imported into the
namespace with the use form.

Finally, we define our public api

(defn+ sieve (v)
 (sieve (lists/seq 2 v) 1))

There are two types of function definitions in Joxa; exported and
unexported functions. Exported functions are available outside of
the namespace while unexported functions are only available inside the
namespace itself. The difference in declaration is the use of
defn+ for exported functions in place of defn for unexported
functions. In this example you see us call the unexperted sieve
function and the use again of the lists erlang module. In Joxa, functions
must be defined before they are used. So the unexported sieve/2
had to be defined before the exported sieve/1 function.

1.1.2. Fibonacci

Here we see the Fibonacci implemented as a Joxa Namespace

(ns fibonacci
 (use (erlang :only (>/2 -/2 +/2))))

(defn+ fibo (n)
 (case n
 (0 0)
 (1 1)
 (_ (when (> n 0))
 (+ (fibo (- n 1))
 (fibo (- n 2))))))

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Joxa v0.1.0 documentation

2. Install

If you are using Ubuntu its easiest to install Joxa from the
PPA [https://launchpad.net/~afiniate/+archive/ppa]. This will get
everything setup for you. For other distributions you simply need to
drop the Joxa executable in your path. That executable is an
escript. An escript is basically a binary executable. However, it
depends on the existence (on your machine) of the Erlang Virtual
Machine. So either install that
now from source [http://www.erlang.org] or install it from the
packaging system on your distribution.

If you are using Windows, install a recent Erlang (R15B or newer), add
Erlang’s bin directory to your path, and drop joxa.cmd in there too.

How to properly install your project. Ideally, your project should be
installable via a common (simplistic) method: PyPI for Python, PEAR
for PHP, CPAN for Perl, RubyGems for Ruby, etc.

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Joxa v0.1.0 documentation

3. Quick Start

A quickstart guide which walks new users through building a working
application. This piece is critically important, as it will determine
what new users think of your project. Having a good quickstart guide
shows users that you care for them, and ensures that both you (as a
maintainer) and your users have a good understanding of your project.

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Joxa v0.1.0 documentation

4. The Joxa Language

4.1. Special Forms

4.1.1. let*

(let* (val val-expr ...) expr ...)

4.1.2. try*

(try* expr (catch (error-class error-type) catch-expr ...))

4.1.3. case

(case expr
 (pattern <optional-guard> expr ...)
 ...)

4.1.4. receive

(receive <optional-after>
 (pattern <optional-guard> expr ...)
 ...)

4.1.5. do

(do expr ...)

4.1.6. binary

4.1.6.1. Segment

Each segment has the following general syntax:

<< value (:size size) <type specifier list> >>
(binary value (:size size) <type specifier list>)

Any part of the binary except the value may be left out and receive
sane defaults.

Default values will be used for missing specifications. The default
values are described in Defaults.

Used in binary construction, the value part is any expression. Used
in binary matching, the value part must be a literal or
variable. You can read more about the value part in the section
about constructing binaries and matching binaries.

The size part of the segment multiplied by the unit in the type
specifier list (described below) gives the number of bits for the
segment. In construction, size is any expression that evaluates to
an integer. In matching, size must be a constant expression or a
variable.

The type specifier list is a list of type specifiers separated by
hyphens.

	Type

	The type can be :integer, :float, :binary or :bitstring.

	Signedness

	The signedness specification can be either :signed or :unsigned. Note
that signedness only matters for matching.

	Endianness

	The endianness specification can be either :big, :little, or :native.
Native-endian means that the endian will be resolved at load time to be
either big-endian or little-endian, depending on what is “native” for the
CPU that the Erlang machine is run on.

	Unit

	The unit size is given as unit:IntegerLiteral. The allowed
range is 1-256. It will be multiplied by the Size specifier to give
the effective size of the segment. In R12B, the unit size specifies
the alignment for binary segments without size (examples will follow).

4.1.6.2. Example

(binary X (:size 4) :little :signed :integer (:unit 8))
<<X (:size 4) :little :signed :integer (:unit 8)>>

This element has a total size of 4*8 = 32 bits, and it contains a
signed integer in little-endian order.

4.1.6.3. Defaults

The default type for a segment is integer. The default type does not
depend on the value, even if the value is a literal. For instance, the
default type in <<3.14>> is :integer not :float.

The default size depends on the type. For :integer it is 8. For
:float it is 64. For binary it is all of the :binary. In matching,
this default value is only valid for the very last element. All other
binary elements in matching must have a size specification.

The default :unit depends on the the type. For :integer, :float,
and :bitstring it is 1. For :binary it is 8.

The default signedness is :unsigned.

The default endianness is :big.

4.1.6.4. Constructing Binaries and Bitstrings

This section describes the rules for constructing binaries using the
bit syntax. Unlike when constructing lists or tuples, the construction
of a binary can fail with a badarg exception.

There can be zero or more segments in a binary to be constructed. The
expression <<>> constructs a zero length binary.

Each segment in a binary can consist of zero or more bits. There are
no alignment rules for individual segments of type :integer and
:float. For :binary and :bitstring types without size, the unit
specifies the alignment. Since the default alignment for the :binary
type is 8, the size of a binary segment must be a multiple of 8 bits
(i.e. only whole bytes).

<<(bin :binary) (bitstring :bitstring)>>
(binary (bin :binary) (bitstring :bitstring))

The variable bin in must contain a whole number of bytes, because
the binary type defaults to (:unit 8). A badarg exception will be
generated if bin would consist of (for instance) 17 bits.

On the other hand, the variable bitstring may consist of any number of
bits, for instance 0, 1, 8, 11, 17, 42, and so on, because the default
unit for bitstrings is 1.

The following example

<<(x (:size 1)) (y (:size 6))>>
(binary (x (:size 1)) (y (:size 6)))

will successfully construct a :bitstring of 7 bits. (Provided that
all of x and y are integers.)

When constructing binaries, value and size can be any
expression.

4.1.6.5. Including Literal Strings

As syntactic sugar, a literal string may be written instead of an element.

<<"hello">>

which is syntactic sugar for

<<\h \e \l \l \o>>

4.1.6.6. Matching Binaries

This section describes the rules for matching binaries using the bit
syntax.

There can be zero or more segments in a binary pattern. A binary
pattern can occur in every place patterns are allowed, also inside
other patterns. Binary patterns cannot be nested.

The pattern <<>> matches a zero length binary.

Each segment in a binary can consist of zero or more bits.

A segment of type binary must have a size evenly divisible by 8 (or
divisible by the unit size, if the unit size has been changed).

A segment of type bitstring has no restrictions on the size.

When matching value value must be either a variable or an integer or
floating point literal. Expressions are not allowed.

:size must be an integer literal, or a previously bound
variable.

4.1.6.7. Getting the Rest of the Binary or Bitstring

To match out the rest of a binary, specify a binary field without
size:

(case foo
 (<<(a (:size 8)) (rest :binary)>>
 rest))

The size of the tail must be evenly divisible by 8.

To match out the rest of a bitstring, specify a field without size:

(case foo
 (<<(a (:size 8)) (rest :bitstring)>>
 rest))

There is no restriction on the number of bits in the tail.

4.1.6.8. Examples

<<\a \b \c>>
<<a b (c :size 16)>>

(case <<1 2 3>>
 (<<a b c>>
 {a b c})))

(case <<1 2 3>>
 (<<a b (c :size 16)>>
 {a b c})))

(case <<(1 :size 16) 2 (3 :binary)>>
 (<<(d :size 16) e (f :binary)>>
 {d e f})))

 <<"This is a test">>
(binary "This is a test")

(binary \a \b \c)
(binary a b (c :size 16))

(case (binary 1 2 3)
 ((binary a b c)
 {a b c})))

(case (binary 1 2 3)
 ((binary a b (c :size 16))
 {a b c})))

(case (binary (1 :size 16) 2 (3 :binary))
 ((binary (d :size 16) e (f :binary))
 {d e f})))

4.1.7. $filename

($filename)

4.1.8. $namespace

($namespace)

4.1.9. $line-number

($line-number)

4.1.10. $function-name

($function-name)

4.1.11. apply

(apply fun [args ...])

4.1.12. quote

(quote expr ...)
'expr
:atom

4.1.13. quasiquote

`expr

4.1.14. string

(string "values")

4.1.15. list

(list expr ...)
[expr ...]

4.1.16. tuple

(tuple expr ...)
{expr ...}

4.1.17. macroexpand-1

(macroexpand-1 expr ...)

4.1.18. fn

(fn (arg ...) expr ...)

4.2. Namespaces

ns declarations are used to define the namespace in which a set of
definitions live. The generally also define the context, that is what
other namespaces are available, what functions from other namespaces
are imported and what attributes are defined. A basic namespace
declaration looks as follows.

(ns my-super-module)

This defines a namespace the defn and defmacro definitions that
follow are part of that namespace. The namespace must be defined
before the functions using that namespace. You may also have as many
namespaces as you would like per file, though that is not encouraged.

4.2.1. Namespace Body

The namespace body may consist of any number of require, use and
clauses in any order and in any conversation.

4.2.2. Requiring Namespaces

Other namespaces are not available in your namespace until you
declare your need in a require or use clause. For example the
following namespace will fail during compile.

(ns my-converter)

(defn+ convert-string (str)
 (erlang/binary_to_list str))

This would fail during compilation because you have not declared your
that you are going to use the erlang namespace. We can fix this by
adding a require clause.

(ns my-converter
 (require erlang))

(defn+ convert-string (str)
 (erlang/binary_to_list str))

Suddenly everything compiles happily.

There are several variations to the require clause that you can
use. The variation you use is really up to you. For example to require
multiple namespaces you could have them all in the same require clause
or each on individual require clauses.

(require erlang string test)

(require erlang)
(require string)
(require test)

in general it is much more common to include everything in a single
require clause.

4.2.2.1. Aliasing with Require

Sometimes namespaces names are very long and its annoying to use them
in the namespace body. To avoid this you can add an :as element to
the require clause. This allows you to use both the original name and
the aliased name in your namespace body. For example, if we use
erl_prim_loader we might want to rename it as loader.

(ns my-example
 (require (erl_prim_loader :as loader)))

(defn name-example ()
 (erl_prim_loader/get_path))

(defn alias-example ()
 (loader/get_path))

Both of these examples are functionally equivalent.

4.2.2.2. Making Erlang Modules Appear Like Joxa Namespaces (Joxification)

Its much more common in Joxa to use the - in names as opposed to the
_ as is common in Erlang. To make thing more comfortable for the
namespace definer Joxa offers the joxify element for require
clauses. the joxify element basically aliases defined names from a
name containing _ to a name containing -. It also does this for
all the functions in the module.

Lets use our erl_prim_loader example again.

(ns my-example
 (require (erl_prim_loader :joxify)))

(defn name-example ()
 (erl_prim_loader/get_path))

(defn alias-example ()
 (erl-prim-loader/get-path))

Again both of these are functionally Equivalent.

4.2.3. Attribute Clauses

Attribute clauses are the simplest of the three clauses There are
simply a three element list where the first element is the identifier
‘attr’, the second element is a Joxa term that provides the key value
and the third is a Joxa term that provides the value.

Attributes follow the form:

(attr <key> <value>)

These allow you to define attributes on the namespace. Some of which
are consumable by the compiler, others just informational, all though
are consumable via the module_info. You should note that both the key
and the value must be literal values, no evaluation occurs there.

4.2.4. Using Namespaces

The use clause is a way of importing functions into the namespace so
that you can use them without prepending the namespace. Use clauses
are, by far, the most complex of the namespace clauses as they both
manipulate and subset the functions being imported while at the same
time aliasing the function if desired. As you can see below each
clause may consist of a namespace name, or a list that contains a few
subclauses. The sub-clause is always headed by a namespace name,
followed by an action, followed by the subject of that action. The
action/subject may be repeated to further refine and modify the
imported values. The sub-clause action/subject may occur in any
order. Even though some do not make sense when used together. So, for
example you could have the following

(use string)

(use (string :only (tokens/2)))

(use (string :exclude (substr/3
 join/2
 join/3)))

(use (string :rename ((substr/3 str-substring)
 (join/2 str-join))))

(use (string :as str
 :only (join/2
 substr/3)))

(use (string :as str
 :only (tokens/2)))

(use (string :as str
 :exclude (substr/3
 join/2
 join/3)))

(use (string :as str
 :joxify
 :rename ((substr/3 str-substring)
 (join/2 str-join))))

You should think about use clauses as a series of actions that occur
from left to right. Lets take an example and work through it. The
following is a fairly complex example that highlights some things that
we might want to do.

(use (string :exclude (substr/4 join/2)
 :joxify
 :rename ((sub-word/3 str-subword) (join/2 str-join))))

Lets break this down into actions.

	The namespace declaration. In this case string, this goes to the
namespace and gets a list of all the functions that that namespace
exports. That list of functions is then passed to the next ‘operation’.

	Exclude, this excludes the specified functions from the function
list that was imported. Every action/sub-clause pair after this
exclude will only operate on the functions that have not been
excluded. The opposite of exclude is only. Only subsets the list
of functions to just those specified in the only clause.

	Joxify, This does the exact same thing that joxify does in
require. However, it does it only on the module name and the
functions that we currently have in the list. After this point the
functions in the list can only be referred to by the joxified name.

	Rename. This does what you would think. It renames a function
giving it a different name. This does this on the list of functions
being passed forward. In this example we are renaming sub-word/3
to str-subword. However if we tried to rename substr/4 which we
excluded it would have no effect since its not in the list of
imports being carried forward. NOTE note the joxification of
sub-word/3. Since we specified joxify earlier we must must
refer to it as sub-word/3 instead of sub_word/3.

4.2.5. Author’s Note

When you use require vs use is entirely up to you. Joxa is a young
language and there has not yet been time to hash out what is the best
practice here. I have had the good fortune to code in may languages
and several of those languages have supported ‘import’ clause’s like
use. In the best of those languages the general practice is to use the
use clause only when you are importing operators the require
clause for everything else. In the case of Joxa I will define operators
as anything thats used in a conditional statement, including
guards. The main thing you want to remember is that use impairs
locality of code just a bit (that is knowing where the code that is
being executed is coming from). There are times (like conditionals)
when the clarity of the code is improved enough to make that locality
hit worth while, but in general thats not true. In the end, just
remember that the more transparent code is the easier it is to
maintain and extend and choose use and require with an eye towards
transparency.

4.3. Functions

4.3.1. &rest Arguments to Functions

Rest arguments in a language like Joxa, where arity is basically part
of the namespace, take a bit of thought to get your mind
around. Basically, Joxa like Lisp has the ability to group all
remaining arguments into a list at the discretion of the function
implementer. This changes the way those functions are called and
perhaps referred to.

4.3.1.1. Defined Functions

In module defined functions rest arguments work like you would
expect. For example:

(defn+ i-am-a-rest-fun (arg1 arg2 &rest arg3)
 {arg1 arg2 arg3})

In this case, any time i-am-a-rest-fun is called, the arguments are
collapsed down for the third argument. This happens for any call that
has more then three arguments.

In this case of namespaces i-am-a-rest-fun/3 can actually be
referred to by any arity that is 3 or greater. For example
i-am-a-rest-fun/545 still refers to i-am-a-rest-fun/3 because
those extra arguments are simply collapsed to the three. With that in
mind you could define i-am-a-rest-fun/2 without a problem. However,
you could never define i-am-a-rest-fun/5 because i-am-a-rest-fun/3
overrides anything with arguments three or greater. to give a concrete
example, you could define:

(defn+ i-am-a-rest-fun (arg1 arg2)
 {arg1 arg2})

and it would be valid and make sense. However, you could not define

(defn+ i-am-a-rest-fun (arg1 arg2 arg3 arg4)
 {arg1 arg2 arg3 arg4})

Because i-am-a-rest-fun/3 already fills that namespace completely.

4.3.1.2. Anonymous Functions

Anonymous functions work exactly like defined functions. I could do

(fn (one two &rest three)
 {one two three})

I can then assign that to the variable foo and call foo as:

(foo 1 2 3 4 5 6 7 8 9)

and it would do the correct thing.

4.3.1.3. Variables that Refer to Functions

For the most part variables that reference rest functions work exactly
like you would expect. However, in the case where the ‘restful-ness’
of a variable can not be defined at compile time, a function is
created that does the resolution at run time. This mostly happens when
variables are passed as arguments to functions. At the moment the
argument boundary can not be crossed, so when those variables are used
as functions, they are wrapped in a function that does the runtime
resolution and calls the correct function with the correct args. This
may affect performance.

4.3.1.4. Apply

Apply also works exactly as you would expect. Any resolvable rest call
has the arguments handled correctly at compile time. Any un-resolvable
rest call has a function created to correctly handle the arguments at
runtime.

4.3.1.5. Importing Rest Functions via Use

The use clause in module declarations take a bit of thinking. To
refer to a function in a use clause use the actual arity. In our
function above you would use (use :only i-am-a-rest-fun/3)

4.4. Type Specs

4.4.1. Mutually Recursive Modules

In Joxa code must exist at compile time before it is called. That
means that if you are compiling a module and it calls other modules
those other modules must exist to be called (at compile time). If they
are not it is a build failure. Unfortunately, this makes mutually
recursive functions somewhat difficult. In general mutually recursive
modules are something to be avoided. However, at times they are needed
and there is no way to get around that need. When this occurs Joxa
provides a facility to get around it. This is very similar to its
forward declarations via defspecs. That way is to define a spec for
the remote function. Lets take a look at an example of this

(ns Joxa-exp-nmr-ns1)

(defn+ final ()
 :got-it)

;; Forward declaration for ns2
(defspec Joxa-exp-nmr-ns2/recurse-ns1 () (erlang/any))

(defn+ recurse-ns2 ()
 (joxa-test-nmr-ns2/recurse-ns1))

;; ======

(ns joxa-exp-nmr-ns2)

(defspec joxa-exp-nmr-ns1/final () (erlang/any))

(defn+ recurse-ns1 ()
 (joxa-exp-nmr-ns1/final))

Notice that joxa-exp-nmr-ns1 has a dependency on joxa-exp-nmr-ns2
and vice versa. In normal Joxa code this would not be compilable
because the code that is being called must be available before it is
called. However, we have gotten around this problem by providing
remote defspecs. In joxa-exp-nmr-ns1 we pre-declare
joxa-exp-nmr-ns2/recurse-ns1 while in joxa-exp-nmr-ns2 we
pre-declare joxa-exp-nmr-ns1/final. This allows the Joxa compiler to
check the function against the specs instead of the real module. Of
course, there is no way for the compiler to know if those functions
actually exist, so if you make a mistake you may actually get runtime
errors. So be careful.

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Joxa v0.1.0 documentation

5. Standard Library

5.1. Core

5.1.1. !=

This is a ‘not equal’ operator for Joxa. It is basically equivelent to
(not (= ...)) or the erlang =:=

5.1.1.1. Example

joxa-is> (joxa-core/!= 1 2)
:true

joxa-is> (joxa-core/!= 1 1)
:false

5.1.2. lte

Less then or equal to. Basically equivalent to =<. However this has
some issue in Joxa’s syntax but lte solves these problems.

5.1.2.1. Example

joxa-is> (joxa-core/lte 1 2)
:true

joxa-is> (joxa-core/lte 1 1)
:true

joxa-is> (joxa-core/lte 10 1)
:false

5.1.3. gte

Greater then or equal to. Basically equivalent to >=. However this has
some issue in Joxa’s syntax but gte solves these problems.

5.1.3.1. Example

joxa-is> (joxa-core/gte 1 2)
:false

joxa-is> (joxa-core/gte 1 1)
:true

joxa-is> (joxa-core/gte 10 1)
:true

5.1.4. and

This is a boolean and operation. The main difference between this
and erlang/and/2 is that this allows an unlimited number of
arguments, in the tradition of lisp.

5.1.4.1. Example

joxa-is> (joxa-core/and :true :true :false)
:false

joxa-is> (joxa-core/and :true :true :true (joxa-core/!= 1 2))
:true

5.1.5. or

This is a boolean or operation. The main difference between this
and erlang/or/2 is that this allows an unlimited number of
arguments, in the tradition of lisp.

5.1.5.1. Example

joxa-is> (joxa-core/or :true :true :false)
:true

joxa-is> (joxa-core/or :true :true :true (joxa-core/!= 1 2))
:true

joxa-is> (joxa-core/or :false :false :false)
:false

5.1.6. +

This is the multi-argument version of erlang/+. It does a simple
arithmetic addition for an unlimited number of arguments.

5.1.6.1. Example

joxa-is> (joxa-core/+ 1 2 3 4 5 6 7)
28

5.1.7. -

This is the multi-argument version of erlang/-. It does a simple
arithmetic subtraction for an unlimited number of arguments.

5.1.7.1. Example

joxa-is> (joxa-core/+ 1 2 3 4 5 6 7)
-26

5.1.8. incr

This increments a numeric value (either float or integer)

5.1.8.1. Example

joxa-is> (joxa-core/incr 1)
2

joxa-is> (joxa-core/incr 1.0)
2.0

5.1.9. decr

This decrements a numeric value (either float or integer)

5.1.9.1. Example

joxa-is> (joxa-core/decr 1)
0

joxa-is> (joxa-core/incr 1.0)
0.0

5.1.10. if

if test-form then-form else-form => result*

5.1.10.1. Arguments and Values

	test-form

	a form.

	then-form

	a form.

	else-form

	a form.

	results

	if the test-form yielded true, the values returned by the then-form;
otherwise, the values returned by the else-form.

5.1.10.2. Description

if allows the execution of a form to be dependent on a single
test-form.

First test-form is evaluated. If the result is true, then then-form is
selected; otherwise else-form is selected. Whichever form is selected
is then evaluated.

5.1.10.3. Examples

joxa-is> (joxa-core/if :true 1 2)
1
joxa-is> (joxa-core/if :false 1 2)
2

5.1.11. when

when test-form form* => result*

5.1.11.1. Arguments and Values

	test-form

	a form.

	forms

	an implicit do.

	results

	the values of the forms in a when form if the test-form yields :true
or in an unless form if the test-form yields :false; otherwise :ok.

5.1.11.2. Description

when allows the execution of forms to be dependent on a single test-form.

In a when form, if the test-form yields true, the forms are evaluated
in order from left to right and the values returned by the forms are
returned from the when form. Otherwise, if the test-form yields false,
the forms are not evaluated, and the when form returns :ok.

5.1.11.3. Examples

joxa-is> (joxa-core/when :true :hello)
hello
joxa-is> (joxa-core/when :false :hello)
ok
joxa-is> (joxa-core/when :true (io/format "1") (io/format "2") (io/format "3"))
123

5.1.12. unless

unless test-form form* => result*

5.1.12.1. Arguments and Values

	test-form

	a form.

	forms

	an implicit do.

	results

	the values of the forms in a when form if the test-form yields :true
or in an unless form if the test-form yields :false; otherwise :ok.

Description:

unless allows the execution of forms to be dependent on a single test-form.

In an unless form, if the test-form yields false, the forms are
evaluated in order from left to right and the values returned by the
forms are returned from the unless form. Otherwise, if the test-form
yields :false, the forms are not evaluated, and the unless form returns
:ok.

5.1.12.2. Examples

joxa-is> (joxa-core/unless :true :hello)
ok
joxa-is> (joxa-core/unless :false :hello)
hello
joxa-is> (joxa-core/unless :true (io/format "1") (io/format "2") (io/format "3"))
ok
joxa-is> (joxa-core/unless :false (io/format "1") (io/format "2") (io/format "3"))
123

5.1.13. gensym

gensym => new-atom
gensym x => new-atom

5.1.13.1. Arguments and Values

	x

	a string.

	new-symbol

	a fresh, atom.

5.1.13.2. Description

Creates and returns a fresh, atom.

The name of the new-symbol is the concatenation of a prefix, which
defaults to “G”, and a suffix, which is a randomly generated number.

If x is supplied, then that string is used as a prefix instead of “G”
for this call to gensym only.

5.1.13.3. Examples

joxa-is> (joxa-core/gensym)
'#:GAEECC9'
joxa-is> (joxa-core/gensym "T")
'#:|T66BA871|'

5.1.14. try

5.1.15. let-match

5.1.16. define

define name value => form

5.1.16.1. Arguments and Values

	name

	an atom that represents the defined name

	forms

	an arbitrary value

	form

	a new defmacro that evaluates to the value

Description:

Defines a new macro that creates a compile time mapping between the
name and the value.

5.1.16.2. Examples

joxa-is> (joxa-core/define :true :hello)
ok
joxa-is> (joxa-core/unless :false :hello)
hello
joxa-is> (joxa-core/unless :true (io/format "1") (io/format "2") (io/format "3"))
ok
joxa-is> (joxa-core/unless :false (io/format "1") (io/format "2") (io/format "3"))
123

5.2. Lists

dolist

hd

tl

foldl

map

5.3. Records

Records in Joxa are equivalent and compatible with records in
Erlang. However, like many things in Joxa they are used in very
different ways.

Before we get started there are a few things to keep in mind. Records
are designed to be contained in a single namespace. Defining multiple
records in the same namespace will cause the record system to stomp on
itself. That is the record macros generate many functions and macros
to access various parts of the record. With multiple records in the
same namespace those function names that are generated will conflict.

5.3.1. Overview

Having a namespace per record is no big deal sense you can have
multiple namespaces per file. So to get started lets look at a
trivial, contrived example

(ns example-person
 (require erlang lists)
 (use (joxa-records :only (defrecord/2))))

(joxa-records/defrecord+ person name age {sex male}
 {address "unknown"} city)

(ns example-walker
 (require example-person))

(defn+ create-irish-walker ()
 (example-person/make
 "Robert"
 1024
 :male
 "Somewhere in Ireland"))

(defn+ is-robert? (person)
 (case person
 ((example-person/t name "Robert")
 :true)
 (_
 :false)))

(defn+ is-robert-male? (person)
 (case person
 ((example-person/t name "Robert"
 sex male)
 :true)
 (_
 :false)))

(defn+ get-name-age-address (person)
 (example-person/let person
 (name local-name
 age local-age
 address local-address)
 {local-name local-age local-address}))

This gives a quick overview of some of the things you can do with
records. Now lets jump into some detail.

5.3.2. Definition

joxa-records is the namespace that contains the record system for
Joxa. The two functions that you will interact the most are
defrecord and defrecord+. defrecord and defrecord+ both have
the exact same api. Just like with defn and defmacro the + added
to defrecord means that the record functions and macros will be
exported.

defrecord takes a name for the record followed by a list of field
descriptions. In our example we called our record person

(joxa-records/defrecord+ person name age {sex male}
 {address "unknown"} city)

We then followed it up with the fields name, age, sex, address
and city. As you can see, the sex and address fields are a bit
different. That is because in these cases we are providing a default
value. So in record definitions you can provide just a name, or a name
and a default value. Just as a note, the name must be an atom and the
value a literal.

This is really all there is to it. The defrecord macro generates a
bunch of functions and macros used to interact with the record.

5.3.3. Creating Records

Once the record is defined we want to create it in the code that is
making use of the record. When a record is defined two functions are
defined that are used to create records. The first is the make
function. The second is the make-fields function.

Lets start by looking at the make function

(example-person/make
 "Robert"
 1024
 :male
 "Somewhere in Ireland"),

The make function is fairly strait forward, simple pass values for the
record in the order in which those fields where defined in the
defrecord definition. In this case you must pass a value for every
field in the record.

The make fields function is a bit more flexible. In this case you call
make-fields with a property list that provides a value for each
field that you are interested in defining a value for. Undefined
fields will simple get the value undefined or the default value
specified on record definition. As we can see in the following example

(example-person/make-fields
 [{:name "Robert"}
 {:age 1024}
 {:address "Somewhere in Ireland"}])

We do not provide a value for the sex field or the city field. In
the case of sex the value will default to mail while in the case
of city it will default to undefined.

5.3.4. Getters and Setters

defrecord generates several different ways of getting and setting
values from a function. The most strait forward of these is the field
name accessors. For each field defined Joxa generates a function to
get and set the value. The getter is a function with the name of the
field that takes a single value (the record). The setter is the name
of the field post-fixed by a ! that takes the record as the first
argument as the new value as the second argument. So for example if we
wanted to get and set the age field of the person record we could do
the following

(let (age (example-person/age foo-record))
 (example-person/age! foo-record (+ age 1)))

defrecord also creates a set of anonymous getters and setters that
take the name of the field as an atom. These are the element and
element! functions. To accomplish the same thing we did above, but
with these anonymous functions we could do the following

(let (age (example-person/element :age foo-record))
 (example-person/element! foo-record :age (+ age 1)))

This makes it quite a bit easier to pragmatically manipulate a
record.

Finally, the record system provides a way for the use to get access
to several fields at the same time. This is accomplished through a
specialized let function. So lets say we wanted to get the name,
age and address fields from the record all at once. We could use
the generated let as follows

(example-person/let person-record
 (name local-name
 age local-age
 address local-address)
 {local-name local-age local-address})

The first argument is the record that will have fields extracted. The
second argument is a list of field name, reference name pairs while
the rest is the body of the let. So in this case the value of the
name field in the person-record will be bound to the reference
local-name and be made available in the body of the let. The same is
true for age and address.

5.3.5. Pattern Matching

Joxa has pattern matching and, of course, you want to be able to
trivially match on records. To that end the Joxa record system
provides a macro that generated a matchable thing. That macro is the
t macro. The t macro takes a list of field name, data pairs that
are used to construct a pattern for that record. Lets look at some
examples. In the first example we want to create something that will
match on a record with the name “Robert” and nothing else

(case person-rec
 ((example-person/t name "Robert")
 :matched)
 (_
 :did-not-match))

If we want to match on more fields we can simple add more to the
field/value list

(case person
 ((example-person/t name "Robert"
 sex male)
 :matched)
 (_
 :did-not-match))

or even

(case person
 ((example-person/t name "Robert"
 sex :male
 city :chicago)
 :matched)
 (_
 :did-not-match)))

5.3.6. Meta Data

Finally the record system wants to give you the ability to do
unanticipated things when the need arises. So two functions are
defined to give you metadata data about the record. These functions
are field-info/0 and field-info/1. Field info is a tuple of three
values that gives you the name of the field, the position of the field
in the tuple and its default value. In our example-person record the
result of field-info/0 is

[{name,2,undefined},
 {age,3,undefined},
 {sex,4,male},
 {address,5,"Somewhere in Ireland"},
 {city,6,undefined}]

As you can see it gives you metadata for all the
fields. field-info/1 returns the same metadata but only for a single
field. So if we called field-info with name we would get

{name,2,undefined}

5.3.7. Future Directions

There is still a lot that can be added to records. Things like

	Pre and Post hook functions

	Types and automatic type validators

and more. However, the core defined here shouldn’t change
significantly.

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Joxa v0.1.0 documentation

6. Joxa Style Guide

Copyright (C) 2012 Eric B. Merritt

CC BY-NC-SA 3.0

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported License [http://creativecommons.org/licenses/by-nc-sa/3.0/].

This work is derived from Riastradh’s Lisp Style Rules [http://mumble.net/~campbell/scheme/style.txt] by Talor R. Cambell

This is document describes a recommended style for Joxa. Its an
distilled from the best practices of the existing Lisp world and the
lessons learned in Joxa itself. Its not meant to be a rigid set of
rules for the style extremists. It is meant to help you get the most
out of Joxa.

This guide is written primarily as a collection of guidelines, with
rationale for each rule (If a guideline is missing rationale, please
inform the author!). Although a casual reader might go through and
read the guidelines without the rationale, such a reader would derive
little value from this guide. In order to apply the guidelines
meaningfully, their spirit must be understood; the letter of the
guidelines serves only to hint at the spirit. The rationale is just
as important as the guideline.

6.1. Standard Rules

These are the standard rules for formatting Lisp code; they are
repeated here for completeness, although they are surely described
elsewhere. These are the rules implemented in Emacs Lisp modes, and
utilities such as Paredit.

6.1.1. Parentheses

6.1.1.1. Terminology

This guide avoids the term parenthesis except in the general use of
parentheses or parenthesized, because the word’s generally
accepted definition, outside of the programming language, is a
statement whose meaning is peripheral to the sentence in which it
occurs, and not the typographical symbols used to delimit such
statements.

The balanced pair of typographical symbols that mark parentheses in
English text are round brackets, i.e. (and). There are
several other balanced pairs of typographical symbols, such as square
brackets (commonly called simply brackets in programming circles),
i.e. [and]; curly braces (sometimes called simply braces),
i.e. { and }; angle brackets (sometimes brokets (for broken
brackets)), i.e. < and >.

In any balanced pair of typographical symbols, the symbol that begins
the region delimited by the symbols is called the opening bracket or
the left bracket, such as (or`[` or { or <. The symbol that
ends that region is called the right bracket or the closing bracket,
such as > or } or] or).

6.1.2. Spacing

If any text precedes an opening bracket or follows a closing bracket,
separate that text from that bracket with a space. Conversely, leave
no space after an opening bracket and before following text, or after
preceding text and before a closing bracket.

6.1.2.1. Unacceptable

(foo(bar baz)quux)
(foo (bar baz) quux)

6.1.2.2. Acceptable:

(foo (bar baz) quux)

6.1.2.3. Rationale

This is the same spacing found in standard typography of western text.
It is more aesthetically pleasing.

6.1.3. Line Separation

Absolutely do not place closing brackets on their own lines.

6.1.3.1. Unacceptable

(define (factorial x)
 (if (< x 2)
 1
 (* x (factorial (- x 1

)
)
)
)
)

6.1.3.2. Acceptable

(define (factorial x)
 (if (< x 2)
 1
 (* x (factorial (- x 1)))))

6.1.3.3. Rationale

The parentheses grow lonely if their closing brackets are all kept
separated and segregated.

6.1.3.4. Exceptions to the Above Rule Concerning Line Separation

Do not heed this section unless you know what you are doing. Its
title does not make the unacceptable example above acceptable.

When commenting out fragments of expressions with line comments, it may
be necessary to break a line before a sequence of closing brackets

(define (foo bar)
 (list (frob bar)
 (zork bar)
 ;; (zap bar)
))

Finally, it is acceptable to break a line immediately after an opening
bracket and immediately before a closing bracket for very long lists,
especially in files under version control. This eases the maintenance
of the lists and clarifies version diffs. Example

(define colour-names ;Add more colour names to this list!
 '(
 blue
 cerulean
 green
 magenta
 purple
 red
 scarlet
 turquoise
))

6.1.4. Parenthetical Philosophy

The actual bracket characters are simply lexical tokens to which
little significance should be assigned. Lisp programmers do not
examine the brackets individually, or, Azathoth forbid, count
brackets; instead they view the higher-level structures expressed in
the program, especially as presented by the indentation. Lisp is not
about writing a sequence of serial instructions; it is about building
complex structures by summing parts. The composition of complex
structures from parts is the focus of Lisp programs, and it should be
readily apparent from the Lisp code. Placing brackets haphazardly
about the presentation is jarring to a Lisp programmer, who otherwise
would not even have seen them for the most part.

6.1.4.1. Indentation and Alignment

The operator of any form, i.e. the first subform following the opening
round bracket, determines the rules for indenting or aligning the
remaining forms. Many names in this position indicate special
alignment or indentation rules; these are special operators, macros,
or procedures that have certain parameter structures.

If the first subform is a non-special name, however, then if the
second subform is on the same line, align the starting column of all
following subforms with that of the second subform. If the second
subform is on the following line, align its starting column with that
of the first subform, and do the same for all remaining subforms.

In general, Emacs will indent Lisp code correctly. Run C-M-q
(indent-sexp) on any code to ensure that it is indented correctly, and
configure Emacs so that any non-standard forms are indented
appropriately.

6.1.4.2. Unacceptable

(+ (sqrt -1)
 (* x y)
 (+ p q))

(+
 (sqrt -1)
 (* x y)
 (+ p q))

6.1.4.3. Acceptable

(+ (sqrt -1)
 (* x y)
 (+ p q))

(+
 (sqrt -1)
 (* x y)
 (+ p q))

6.1.4.4. Rationale

The columnar alignment allows the reader to follow the operands of any
operation straightforwardly, simply by scanning downward or upward to
match a common column. Indentation dictates structure; confusing
indentation is a burden on the reader who wishes to derive structure
without matching parentheses manually.

6.1.4.5. Non-Symbol Indentation and Alignment

The above rules are not exhaustive; some cases may arise with strange
data in operator positions.

6.1.5. Lists

Unfortunately, style varies here from person to person and from editor
to editor. Here are some examples of possible ways to indent lists
whose operators are lists:

6.1.5.1. Questionable

((car x) ;Requires hand indentation.
 (cdr x)
 foo)

((car x) (cdr x) ;GNU Emacs
 foo)

6.1.5.2. Preferable

((car x) ;Any Emacs
 (cdr x)
 foo)

6.1.5.3. Rationale

The operands should be aligned, as if it were any other procedure call
with a name in the operator position; anything other than this is
confusing because it gives some operands greater visual distinction,
allowing others to hide from the viewer’s sight. For example, the
questionable indentation

((car x) (cdr x)
 foo)

can make it hard to see that foo and (cdr x) are both operands here at
the same level. However, GNU Emacs will generate that indentation by
default.

6.1.6. Strings

If the form in question is meant to be simply a list of literal data,
all of the subforms should be aligned to the same column, irrespective
of the first subform.

6.1.6.1. Unacceptable

("foo" "bar" "baz" "quux" "zot"
 "mumble" "frotz" "gargle" "mumph")

6.1.6.2. Questionable, but acceptable

(3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4
 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3)

6.1.6.3. Acceptable

("foo" "bar" "baz" "quux" "zot"
 "mumble" "frotz" "gargle" "mumph")

("foo"
 "bar" "baz" "quux" "zot"
 "mumble" "frotz" "gargle" "mumph")

6.1.6.4. Rationale

Seldom is the first subform distinguished for any reason, if it is a
literal; usually in this case it indicates pure data, not code. Some
editors and pretty-printers, however, will indent unacceptably in the
example given unless the second subform is on the next line anyway,
which is why the last way to write the fragment is usually best.

6.1.7. Names

Naming is subtle and elusive. Bizarrely, it is simultaneously
insignificant, because an object is independent of and unaffected by
the many names by which we refer to it, and also of supreme
importance, because it is what programming – and, indeed, almost
everything that we humans deal with – is all about. A full
discussion of the concept of name lies far outside the scope of this
document, and could surely fill not even a book but a library.

Symbolic names are written with English words separated by hyphens.
Scheme and Common Lisp both fold the case of names in programs;
consequently, camel case is frowned upon, and not merely because it is
ugly. Underscores are unacceptable separators except for names that
were derived directly from a foreign language without translation.

6.1.7.1. Unacceptable

XMLHttpRequest
foreach
append_map

6.1.7.2. Acceptable

xml-http-request
for-each
append-map

6.1.8. Funny Characters

6.1.8.1. Question Marks: Predicates

Affix a question mark to the end of a name for a procedure whose
purpose is to ask a question of an object and to yield a boolean
answer. Such procedures are called predicates. Do not use a
question mark if the procedure may return any object other than a
boolean.

Examples
.. code-block:: clojure

pair? procedure? proper-list?

Pronounce the question mark as if it were the isolated letter p. For
example, to read the fragment (pair? object) aloud, say: pair-pee
object.

6.1.8.2. Exclamation Marks: Destructive Operations

Affix an exclamation mark to the end of a name for a procedure (or
macro) whose primary purpose is to modify an object. This is common in
lisps that support destructive operations. Joxa, of course, does
not. However, this syntax is useful in situations where the intent is
to modify an object.

Examples

set-car! append!

Pronounce the exclamation mark as bang. For example, to read the
fragment (append! list tail) aloud, say: append-bang list tail.

6.1.8.3. Asterisks: Variants, Internal Routines

Affix an asterisk to the end of a name to make a variation on a theme
of the original name.

Example

let -> let*

Prefer a meaningful name over an asterisk; the asterisk does not
explain what variation on the theme the name means.

6.1.8.4. with- and call-with-: Dynamic State and Cleanup

Prefix WITH- to any procedure that establishes dynamic state and
calls a nullary procedure, which should be the last (required)
argument. The dynamic state should be established for the extent of
the nullary procedure, and should be returned to its original state
after that procedure returns.

Examples

with-input-from-file
with-output-to-file

Prefix call-with- to any procedure that calls a procedure, which
should be its last argument, with some arguments, and is either
somehow dependent upon the dynamic state or continuation of the
program, or will perform some action to clean up data after the
procedure argument returns. Generally, CALL-WITH- procedures should
return the values that the procedure argument returns, after
performing the cleaning action.

call-with-input-file and call-with-output-file both accept a
pathname and a procedure as an argument, open that pathname (for input
or output, respectively), and call the procedure with one argument, a
port corresponding with the file named by the given pathname. After
the procedure returns, call-with-input-file and call-with-output-file
close the file that they opened, and return whatever the procedure
returned.

Generally, the distinction between these two classes of procedures is
that call-with-... procedures should not establish fresh dynamic
state and instead pass explicit arguments to their procedure arguments,
whereas with-... should do the opposite and establish dynamic state
while passing zero arguments to their procedure arguments.

6.1.9. Comments

Write heading comments with at least four semicolons; see also the
section below titled ‘Outline Headings’.

Write top-level comments with three semicolons.

Write comments on a particular fragment of code before that fragment
and aligned with it, using two semicolons.

Write margin comments with one semicolon.

The only comments in which omission of a space between the semicolon
and the text is acceptable are margin comments.

Examples

;;;; Frob Grovel

;;; This section of code has some important implications:
;;; 1. Foo.
;;; 2. Bar.
;;; 3. Baz.

(defn (fnord zarquon)
 ;; If zob, then veeblefitz.
 (quux zot
 mumble ;Zibblefrotz.
 frotz))

6.2. General Layout

Contained in the rationale for some of the following rules are
references to historical limitations of terminals and printers, which
are now considered aging cruft of no further relevance to today’s
computers. Such references are made only to explain specific measures
chosen for some of the rules, such as a limit of eighty columns per
line, or sixty-six lines per page. There is a real reason for each of
the rules, and this real reason is not intrinsically related to the
historical measures, which are mentioned only for the sake of
providing some arbitrary measure for the limit.

6.2.1. File Length

If a file exceeds five hundred twelve lines, begin to consider
splitting it into multiple files. Do not write program files that
exceed one thousand twenty-four lines. Write a concise but
descriptive title at the top of each file, and include no content in
the file that is unrelated to its title.

6.2.1.1. Rationale

Files that are any larger should generally be factored into smaller
parts. (One thousand twenty-four is a nicer number than one
thousand.) Identifying the purpose of the file helps to break it into
parts if necessary and to ensure that nothing unrelated is included
accidentally.

6.2.2. Top-Level Form Length

Do not write top-level forms that exceed twenty-one lines, except for
top-level forms that serve only the purpose of listing large sets of
data. If a procedure exceeds this length, split it apart and give
names to its parts. Avoid names formed simply by appending a number
to the original procedure’s name; give meaningful names to the parts.

6.2.2.1. Rationale

Top-level forms, especially procedure definitions, that exceed this
length usually combine too many concepts under one name. Readers of
the code are likely to more easily understand the code if it is
composed of separately named parts. Simply appending a number to the
original procedure’s name can help only the letter of the rule, not
the spirit, however, even if the procedure was taken from a standard
algorithm description. Using comments to mark the code with its
corresponding place in the algorithm’s description is acceptable, but
the algorithm should be split up in meaningful fragments anyway.

Rationale for the number twenty-one: Twenty-one lines, at a maximum of
eighty columns per line, fits in a GNU Emacs instance running in a
24x80 terminal. Although the terminal may have twenty-four lines,
three of the lines are occupied by GNU Emacs: one for the menu bar
(which the author of this guide never uses, but which occupies a line
nevertheless in a vanilla GNU Emacs installation), one for the mode
line, and one for the minibuffer’s window. The writer of some code
may not be limited to such a terminal, but the author of this style
guide often finds it helpful to have at least four such terminals or
Emacs windows open simultaneously, spread across a twelve-inch laptop
screen, to view multiple code fragments.

6.2.3. Line Length

Do not write lines that exceed eighty columns, or if possible
seventy-two.

6.2.3.1. Rationale

Following multiple lines that span more columns is difficult for
humans, who must remember the line of focus and scan right to left
from the end of the previous line to the beginning of the next line;
the more columns there are, the harder this is to do. Sticking to a
fixed limit helps to improve readability.

Rationale for the numbers eighty and seventy-two: It is true that we
have very wide screens these days, and we are no longer limited to
eighty-column terminals; however, we ought to exploit our wide screens
not by writing long lines, but by viewing multiple fragments of code
in parallel, something that the author of this guide does very often.
Seventy-two columns leave room for several nested layers of quotation
in email messages before the code reaches eighty columns. Also, a
fixed column limit yields nicer printed output, especially in
conjunction with pagination; see the section ‘Pagination’ below.

6.2.4. Blank Lines

Separate each adjacent top-level form with a single blank line (i.e.
two line breaks). Do not place blank lines in the middle of a
procedure body, except to separate internal definitions; if there is a
blank line for any other reason, split the top-level form up into
multiple ones.

6.2.4.1. Rationale

More than one blank line is distracting and sloppy. If the two
concepts that are separated by multiple blank lines are really so
distinct that such a wide separator is warranted, then they are
probably better placed on separate pages anyway; see the next section,
Pagination.

6.2.5. Dependencies

When writing a file or module, minimize its dependencies. If there
are too many dependencies, consider breaking the module up into
several parts, and writing another module that is the sum of the parts
and that depends only on the parts, not their dependencies.

6.2.5.1. Rationale

A fragment of a program with fewer dependencies is less of a burden on
the reader’s cognition. The reader can more easily understand the
fragment in isolation; humans are very good at local analyses, and
terrible at global ones.

6.2.6. Naming

This section requires an elaborate philosophical discussion which the
author is too ill to have the energy to write at this moment.

Compose concise but meaningful names. Do not cheat by abbreviating
words or using contractions.

6.2.6.1. Rationale

Abbreviating words in names does not make them shorter; it only makes
them occupy less screen space. The reader still must understand the
whole long name. This does not mean, however, that names should
necessarily be long; they should be descriptive. Some long names are
more descriptive than some short names, but there are also descriptive
names that are not long and long names that are not descriptive. Here
is an example of a long name that is not descriptive, from SchMUSE, a
multi-user simulation environment written in MIT Scheme:

frisk-descriptor-recursive-subexpr-descender-for-frisk-descr-env

Not only is it long (sixty-four characters) and completely
impenetrable, but halfway through its author decided to abbreviate
some words as well!

Do not write single-letter variable names. Give local variables
meaningful names composed from complete English words.

6.2.6.2. Rationale

It is tempting to reason that local variables are invisible to other
code, so it is OK to be messy with their names. This is faulty
reasoning: although the next person to come along and use a library
may not care about anything but the top-level definitions that it
exports, this is not the only audience of the code. Someone will also
want to read the code later on, and if it is full of impenetrably
terse variable names without meaning, that someone will have a hard
time reading the code.

Give names to intermediate values where their expressions do not
adequately describe them.

6.2.6.3. Rationale

An expression is a term that expresses some value. Although a
machine needs no higher meaning for this value, and although it should
be written to be sufficiently clear for a human to understand what it
means, the expression might mean something more than just what it says
where it is used. Consequently, it is helpful for humans to see names
given to expressions.

Example

A hash table maps foos to bars; (dict/get dict foo :false) expresses
the datum that dict maps foo to, but that expression gives the reader
no hint of any information concerning that datum. (let ((bar
(dict/get dict foo :false))) ...) gives a helpful name for the reader
to understand the code without having to find the definition of
HASH-TABLE.

Index variables such as i and j, or variables such as A and D naming
the car and cdr of a pair, are acceptable only if they are completely
unambiguous in the scope.

Avoid functional combinators, or, worse, the point-free (or
point-less) style of code that is popular in the Haskell world. At
most, use function composition only where the composition of functions
is the crux of the idea being expressed, rather than simply a
procedure that happens to be a composition of two others.

6.2.6.4. Rationale

Tempting as it may be to recognize patterns that can be structured as
combinations of functional combinators – say, ‘compose this procedure
with the projection of the second argument of that other one’, or
(compose foo (project 2 bar)) –, the reader of the code must
subsequently examine the elaborate structure that has been built up to
obscure the underlying purpose. The previous fragment could have been
written (fn (a b) (foo (bar b))), which is in fact shorter, and
which tells the reader directly what argument is being passed on to
what, and what argument is being ignored, without forcing the reader
to search for the definitions of foo and bar or the call site of the
final composition. The explicit fragment contains substantially more
information when intermediate values are named, which is very helpful
for understanding it and especially for modifying it later on.

The screen space that can be potentially saved by using functional
combinators is made up for by the cognitive effort on the part of the
reader. The reader should not be asked to search globally for usage
sites in order to understand a local fragment. Only if the structure
of the composition really is central to the point of the narrative
should it be written as such. For example, in a symbolic integrator
or differentiator, composition is an important concept, but in most
code the structure of the composition is completely irrelevant to the
real point of the code.

If a parameter is ignored, give it a meaningful name nevertheless and
say that it is ignored; do not simply call it ‘ignored’.

When naming top-level bindings, assume namespace partitions unless in a
context where they are certain to be absent. Do not write explicit
namespace prefixes, such as foo/bar for an operation BAR in a module
foo, unless the names will be used in a context known not to have any
kind of namespace partitions.

6.2.6.5. Rationale

Explicit namespace prefixes are ugly, and lengthen names without
adding much semantic content. Joxa has its package system to separate
the namespaces of names. It is better to write clear names which can
be disambiguated if necessary, rather than to write names that assume
some kind of disambiguation to be necessary to begin with.
Furthermore, explicit namespace prefixes are inadequate to cover name
clashes anyway: someone else might choose the same namespace prefix.
Relegating this issue to a module system removes it from the content
of the program, where it is uninteresting.

6.2.7. Comments

Write comments only where the code is incapable of explaining itself.
Prefer self-explanatory code over explanatory comments. Avoid
‘literate programming’ like the plague.

6.2.7.1. Rationale

If the code is often incapable of explaining itself, then perhaps it
should be written in a more expressive language. This may mean using
a different programming language altogether, or, since we are talking
about Lisp, it may mean simply building a combinator language or a
macro language for the purpose.

6.3. Attribution

This guide was derived from

Riastradh’s Lisp Style Rules by Taylor R. Campbell

licensed under:

This work is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License [http://creativecommons.org/licenses/by-nc-sa/3.0/]

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Joxa v0.1.0 documentation

7. Contributing

How to contribute to your project. This section should include (in detail):

	How to check out your project’s source code.

	Which branch to use for development.

	What style rules to follow when adding code.

	How to run all of the project’s unit tests, integration tests, etc.

	An example workflow.

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Joxa v0.1.0 documentation

8. Getting Help

Joxa is in an early stage. So, for now, the Joxa community is the
Erlware community. We use the erlware-questions and erlware-dev
mailing lists (see below). We also make heavy use of the github issues
and wiki. Make use of all these resources for your information needs.

8.1. Resources

	[Erlware Questions](http://groups.google.com/group/erlware-questions)
Is a general list for questions and discussion around Erlware
projects, including Joxa. It should be your first stop if you have
questions.

	[Erlware Dev](http://groups.google.com/group/erlware-dev) If you
are interested in developing and contributing to an Erlware
project, including Joxa, this is the place you should go.

	[Joxa Issues](https://github.com/erlware/joxa/issues)

	[Joxa Wiki](https://github.com/erlware/joxa/wiki)

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	Joxa v0.1.0 documentation

9. Frequently Asked Questions

Joxa is a very small functional language. Its actually designed less
to be a language as a tool set in which to build domain specific
languages through the use of macros and libraries.

Though it is based on the Erlang VM it is not, and has no intention of
being, Erlang.

9.1. What is the difference between Joxa and LFE (both Lisps for the Erlang VM)

This is best explained in the following post:
http://blog.ericbmerritt.com/2012/02/21/differences-between-joxa-and-lfe.html

9.2. How Do You Create Mutually Recursive Functions

All functions in Joxa have to be declared before they can be used. For
recursive functions this works fine, however, for two functions that
recurse on each other there doesn’t seem to be much you can do.

9.3. Type Specs are your answer

Do a defspec of the function before using it. Specs, aside from
providing type information to the compiler, also serve as a
pre-declaration. For example, lets say you had this function:

(defn even? (number)
 (case number
 (0
 :true)
 (_
 (odd? (- (erlang/abs number) 1)))))

(defn odd? (number)
 (case number
 (0
 :false)
 (_
 (even? (- (erlang/abs number) 1)))))

This obviously wont work because odd? will not be declared when
even? is defined. You can get around this problem by declaring a defspec for odd?.

(defspec odd? ((erlang/integer)) (erlang/boolean))

(defn even? (number)
 (case number
 (0
 :true)
 (_
 (odd? (- (erlang/abs number) 1)))))

(defn odd? (number)
 (case number
 (0
 :false)
 (_
 (even? (- (erlang/abs number) 1)))))

With this it works because you have declared your intent to implement
odd? on which even? depends.

9.4. Will compiler.jxa ever be able to use macros?

Probably not, its a problem in the erts code loading scheme. Macros
take iterative compilation that is, each form needs to be available at
compile time so you have to compile each form and load it
individually. When you load the compiler, it overrides the
joxa.compiler module currently loaded and since the new thing is
incomplete it breaks.

I think there might be some possibility using of the new/old positions
in the code loader but that is a long shot. So for the compiler, and
the compiler only, macros are not usable. Thats why the bootstrap
flag is there it aborts iterative compilation and just does it all in
one fell swoop.

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	Joxa v0.1.0 documentation

Index

 Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

 _static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

search.html

 Navigation

 		
 index

 		Joxa v0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Eric B Merritt.
 Created using Sphinx 1.3.4.

_static/comment.png

_static/plus.png

_static/down-pressed.png

