
Joxa Documentation
Release v0.1.0

Eric B Merritt

February 24, 2016

Contents

1 Introduction 3
1.1 Examples . 3

2 Install 7

3 Quick Start 9

4 The Joxa Language 11
4.1 Special Forms . 11
4.2 Namespaces . 16
4.3 Functions . 19
4.4 Type Specs . 20

5 Standard Library 23
5.1 Core . 23
5.2 Lists . 28
5.3 Records . 28

6 Joxa Style Guide 33
6.1 Standard Rules . 33
6.2 General Layout . 40
6.3 Attribution . 43

7 Contributing 45

8 Getting Help 47
8.1 Resources . 47

9 Frequently Asked Questions 49
9.1 What is the difference between Joxa and LFE (both Lisps for the Erlang VM) 49
9.2 How Do You Create Mutually Recursive Functions . 49
9.3 Type Specs are your answer . 49
9.4 Will compiler.jxa ever be able to use macros? . 50

10 Indices and tables 51

i

ii

Joxa Documentation, Release v0.1.0

Joxa is a small semantically clean, functional Lisp. It is designed as a general-purpose language encouraging
interactive development and a functional programming style. Like other Lisps, Joxa treats code as data and has a full
(unhygienic) macro system. Joxa has an advantage over other Lisp in that it runs on the Erlang Virtual Machine and
inherits all of the benifits for concurrency and distribution provided by that platform.

Contents:

Contents 1

Joxa Documentation, Release v0.1.0

2 Contents

CHAPTER 1

Introduction

Joxa is a Lisp designed to support general programming with good declarative data description facilities. Joxa is
intended to be used as a powerful, light-weight alternative for Erlang for any program any system where a language
like Erlang is prefered. Joxa is implemented as a compiler and library, written in itself while still making extensive
use of the Erlang libraries and infrastructure.

Joxa is free software, and is provided as usual with no guarantees, as stated in its license. Further information is a
available on the Joxa website, www.joxa.org.

1.1 Examples

The very first thing that everyone wants to see when exploring a new language is what it looks like. So to feed that
need lets jump right into some examples and descriptions.

1.1.1 Sieve of Eratosthenes

Here we see the Sieve of Eratosthenes implemented as a Joxa Namespace

(ns sieve-of-eratosthenes
(require lists)
(use (joxa.core :as core :only (!=/2))

(erlang :only (rem/2 +/2))))

(defn sieve (v primes)
(case v
([] primes)
((h . t)

(sieve (lists/filter (fn (x)
(!= (rem x h) 0)) t)

(+ primes 1)))))

(defn+ sieve (v)
(sieve (lists/seq 2 v) 1))

Now that we have seen the entire namespace lets start breaking it down

(ns sieve-of-eratosthenes
(require lists)

(use (joxa.core :as core :only (!=/2))
(erlang :only (rem/2 +/2))))

3

Joxa Documentation, Release v0.1.0

The very first thing that must occur in file is the namespace special form. You can call a fully qualified macro to create
the namespace, but that macro must create the namespace first. A namespace is defined with the ns special form.

The ns special form consists of three main parts (we will go into greater detail later in this document). The first part is
the name of the namespace. Which is an atom that identifies that namespace. Though is not a requirement its generally
a good idea for the namespace name match the file name.

The second part of the ns special form is the require form. The require form provides a list of those namespaces
that will be used by the namespace. This is not strictly required (namespaces that are used in the namespace being
defined but not required will be automatically required). However, it is very good documentation and I encourage you
to require all your namespaces.

The third part is the use form. The use form allow you to import functions into the namespace. So you do not have to
write the fully qualified name. This is especially useful for functions and macros defined as operators. Don’t go crazy
with it though. It is a spice that should be used only where it enhances clarity.

Any number of require and use statements can appear in the namespace in any order.

Next we see the function definition

(defn sieve (v primes)
(case v
([] primes)
((h . t)

(sieve (lists/filter (fn (x)
(!= (rem x h) 0)) t)

(+ primes 1)))))

We define a function called sieve that takes two arguments. The argument v and, next, the argument primes. We
then have a single case expression that forms the body of the function. A case expression allows the author to do
pattern matching on the second clause of the expression. While he rest of the clauses identify patterns and what will
be evaluate based on the form of the output of the second clause. In this example, you can see that an empty list will
return the argument primes unchanged while a cons cell will result in a recursive call of sieve, a call to the erlang
module lists with an anonymous function. You can all see the use of the functions (not defined in the namespace) that
we imported into the namespace with the use form.

Finally, we define our public api

(defn+ sieve (v)
(sieve (lists/seq 2 v) 1))

There are two types of function definitions in Joxa; exported and unexported functions. Exported functions are avail-
able outside of the namespace while unexported functions are only available inside the namespace itself. The difference
in declaration is the use of defn+ for exported functions in place of defn for unexported functions. In this example
you see us call the unexperted sieve function and the use again of the lists erlang module. In Joxa, functions must be
defined before they are used. So the unexported sieve/2 had to be defined before the exported sieve/1 function.

1.1.2 Fibonacci

Here we see the Fibonacci implemented as a Joxa Namespace

(ns fibonacci
(use (erlang :only (>/2 -/2 +/2))))

(defn+ fibo (n)
(case n
(0 0)
(1 1)
(_ (when (> n 0))

4 Chapter 1. Introduction

Joxa Documentation, Release v0.1.0

(+ (fibo (- n 1))
(fibo (- n 2))))))

1.1. Examples 5

Joxa Documentation, Release v0.1.0

6 Chapter 1. Introduction

CHAPTER 2

Install

If you are using Ubuntu its easiest to install Joxa from the PPA. This will get everything setup for you. For other
distributions you simply need to drop the Joxa executable in your path. That executable is an escript. An escript is
basically a binary executable. However, it depends on the existence (on your machine) of the Erlang Virtual Machine.
So either install that now from source or install it from the packaging system on your distribution.

If you are using Windows, install a recent Erlang (R15B or newer), add Erlang’s bin directory to your path, and drop
joxa.cmd in there too.

How to properly install your project. Ideally, your project should be installable via a common (simplistic) method:
PyPI for Python, PEAR for PHP, CPAN for Perl, RubyGems for Ruby, etc.

7

https://launchpad.net/~afiniate/+archive/ppa
http://www.erlang.org

Joxa Documentation, Release v0.1.0

8 Chapter 2. Install

CHAPTER 3

Quick Start

A quickstart guide which walks new users through building a working application. This piece is critically important,
as it will determine what new users think of your project. Having a good quickstart guide shows users that you care
for them, and ensures that both you (as a maintainer) and your users have a good understanding of your project.

9

Joxa Documentation, Release v0.1.0

10 Chapter 3. Quick Start

CHAPTER 4

The Joxa Language

4.1 Special Forms

4.1.1 let*

(let* (val val-expr ...) expr ...)

4.1.2 try*

(try* expr (catch (error-class error-type) catch-expr ...))

4.1.3 case

(case expr
(pattern <optional-guard> expr ...)
...)

4.1.4 receive

(receive <optional-after>
(pattern <optional-guard> expr ...)
...)

4.1.5 do

(do expr ...)

4.1.6 binary

Segment

Each segment has the following general syntax:

11

Joxa Documentation, Release v0.1.0

<< value (:size size) <type specifier list> >>
(binary value (:size size) <type specifier list>)

Any part of the binary except the value may be left out and receive sane defaults.

Default values will be used for missing specifications. The default values are described in Defaults.

Used in binary construction, the value part is any expression. Used in binary matching, the value part must be a literal
or variable. You can read more about the value part in the section about constructing binaries and matching binaries.

The size part of the segment multiplied by the unit in the type specifier list (described below) gives the number of
bits for the segment. In construction, size is any expression that evaluates to an integer. In matching, size must be a
constant expression or a variable.

The type specifier list is a list of type specifiers separated by hyphens.

Type The type can be :integer, :float, :binary or :bitstring.

Signedness The signedness specification can be either :signed or :unsigned. Note that signedness only matters for
matching.

Endianness The endianness specification can be either :big, :little, or :native. Native-endian means that the endian
will be resolved at load time to be either big-endian or little-endian, depending on what is “native” for the CPU
that the Erlang machine is run on.

Unit The unit size is given as unit:IntegerLiteral. The allowed range is 1-256. It will be multiplied by the Size
specifier to give the effective size of the segment. In R12B, the unit size specifies the alignment for binary
segments without size (examples will follow).

Example

(binary X (:size 4) :little :signed :integer (:unit 8))
<<X (:size 4) :little :signed :integer (:unit 8)>>

This element has a total size of 4*8 = 32 bits, and it contains a signed integer in little-endian order.

Defaults

The default type for a segment is integer. The default type does not depend on the value, even if the value is a literal.
For instance, the default type in <<3.14>> is :integer not :float.

The default size depends on the type. For :integer it is 8. For :float it is 64. For binary it is all of the :binary. In
matching, this default value is only valid for the very last element. All other binary elements in matching must have a
size specification.

The default :unit depends on the the type. For :integer, :float, and :bitstring it is 1. For :binary it is 8.

The default signedness is :unsigned.

The default endianness is :big.

Constructing Binaries and Bitstrings

This section describes the rules for constructing binaries using the bit syntax. Unlike when constructing lists or tuples,
the construction of a binary can fail with a badarg exception.

There can be zero or more segments in a binary to be constructed. The expression <<>> constructs a zero length
binary.

12 Chapter 4. The Joxa Language

Joxa Documentation, Release v0.1.0

Each segment in a binary can consist of zero or more bits. There are no alignment rules for individual segments of type
:integer and :float. For :binary and :bitstring types without size, the unit specifies the alignment. Since the default
alignment for the :binary type is 8, the size of a binary segment must be a multiple of 8 bits (i.e. only whole bytes).

<<(bin :binary) (bitstring :bitstring)>>
(binary (bin :binary) (bitstring :bitstring))

The variable bin in must contain a whole number of bytes, because the binary type defaults to (:unit 8). A badarg
exception will be generated if bin would consist of (for instance) 17 bits.

On the other hand, the variable bitstring may consist of any number of bits, for instance 0, 1, 8, 11, 17, 42, and so on,
because the default unit for bitstrings is 1.

The following example

<<(x (:size 1)) (y (:size 6))>>
(binary (x (:size 1)) (y (:size 6)))

will successfully construct a :bitstring of 7 bits. (Provided that all of x and y are integers.)

When constructing binaries, value and size can be any expression.

Including Literal Strings

As syntactic sugar, a literal string may be written instead of an element.

<<"hello">>

which is syntactic sugar for

<<\h \e \l \l \o>>

Matching Binaries

This section describes the rules for matching binaries using the bit syntax.

There can be zero or more segments in a binary pattern. A binary pattern can occur in every place patterns are allowed,
also inside other patterns. Binary patterns cannot be nested.

The pattern <<>> matches a zero length binary.

Each segment in a binary can consist of zero or more bits.

A segment of type binary must have a size evenly divisible by 8 (or divisible by the unit size, if the unit size has been
changed).

A segment of type bitstring has no restrictions on the size.

When matching value value must be either a variable or an integer or floating point literal. Expressions are not allowed.

:size must be an integer literal, or a previously bound variable.

Getting the Rest of the Binary or Bitstring

To match out the rest of a binary, specify a binary field without size:

(case foo
(<<(a (:size 8)) (rest :binary)>>

rest))

4.1. Special Forms 13

Joxa Documentation, Release v0.1.0

The size of the tail must be evenly divisible by 8.

To match out the rest of a bitstring, specify a field without size:

(case foo
(<<(a (:size 8)) (rest :bitstring)>>
rest))

There is no restriction on the number of bits in the tail.

Examples

<<\a \b \c>>
<<a b (c :size 16)>>

(case <<1 2 3>>
(<<a b c>>

{a b c})))

(case <<1 2 3>>
(<<a b (c :size 16)>>

{a b c})))

(case <<(1 :size 16) 2 (3 :binary)>>
(<<(d :size 16) e (f :binary)>>

{d e f})))

<<"This is a test">>
(binary "This is a test")

(binary \a \b \c)
(binary a b (c :size 16))

(case (binary 1 2 3)
((binary a b c)

{a b c})))

(case (binary 1 2 3)
((binary a b (c :size 16))

{a b c})))

(case (binary (1 :size 16) 2 (3 :binary))
((binary (d :size 16) e (f :binary))

{d e f})))

4.1.7 $filename

($filename)

4.1.8 $namespace

($namespace)

14 Chapter 4. The Joxa Language

Joxa Documentation, Release v0.1.0

4.1.9 $line-number

($line-number)

4.1.10 $function-name

($function-name)

4.1.11 apply

(apply fun [args ...])

4.1.12 quote

(quote expr ...)
'expr
:atom

4.1.13 quasiquote

`expr

4.1.14 string

(string "values")

4.1.15 list

(list expr ...)
[expr ...]

4.1.16 tuple

(tuple expr ...)
{expr ...}

4.1.17 macroexpand-1

(macroexpand-1 expr ...)

4.1.18 fn

4.1. Special Forms 15

Joxa Documentation, Release v0.1.0

(fn (arg ...) expr ...)

4.2 Namespaces

ns declarations are used to define the namespace in which a set of definitions live. The generally also define the
context, that is what other namespaces are available, what functions from other namespaces are imported and what
attributes are defined. A basic namespace declaration looks as follows.

(ns my-super-module)

This defines a namespace the defn and defmacro definitions that follow are part of that namespace. The namespace
must be defined before the functions using that namespace. You may also have as many namespaces as you would like
per file, though that is not encouraged.

4.2.1 Namespace Body

The namespace body may consist of any number of require, use and clauses in any order and in any conversation.

4.2.2 Requiring Namespaces

Other namespaces are not available in your namespace until you declare your need in a require or use clause. For
example the following namespace will fail during compile.

(ns my-converter)

(defn+ convert-string (str)
(erlang/binary_to_list str))

This would fail during compilation because you have not declared your that you are going to use the erlang namespace.
We can fix this by adding a require clause.

(ns my-converter
(require erlang))

(defn+ convert-string (str)
(erlang/binary_to_list str))

Suddenly everything compiles happily.

There are several variations to the require clause that you can use. The variation you use is really up to you. For
example to require multiple namespaces you could have them all in the same require clause or each on individual
require clauses.

(require erlang string test)

(require erlang)
(require string)
(require test)

in general it is much more common to include everything in a single require clause.

16 Chapter 4. The Joxa Language

Joxa Documentation, Release v0.1.0

Aliasing with Require

Sometimes namespaces names are very long and its annoying to use them in the namespace body. To avoid this you
can add an :as element to the require clause. This allows you to use both the original name and the aliased name in
your namespace body. For example, if we use erl_prim_loader we might want to rename it as loader.

(ns my-example
(require (erl_prim_loader :as loader)))

(defn name-example ()
(erl_prim_loader/get_path))

(defn alias-example ()
(loader/get_path))

Both of these examples are functionally equivalent.

Making Erlang Modules Appear Like Joxa Namespaces (Joxification)

Its much more common in Joxa to use the - in names as opposed to the _ as is common in Erlang. To make thing more
comfortable for the namespace definer Joxa offers the joxify element for require clauses. the joxify element basically
aliases defined names from a name containing _ to a name containing -. It also does this for all the functions in the
module.

Lets use our erl_prim_loader example again.

(ns my-example
(require (erl_prim_loader :joxify)))

(defn name-example ()
(erl_prim_loader/get_path))

(defn alias-example ()
(erl-prim-loader/get-path))

Again both of these are functionally Equivalent.

4.2.3 Attribute Clauses

Attribute clauses are the simplest of the three clauses There are simply a three element list where the first element
is the identifier ‘attr’, the second element is a Joxa term that provides the key value and the third is a Joxa term that
provides the value.

Attributes follow the form:

(attr <key> <value>)

These allow you to define attributes on the namespace. Some of which are consumable by the compiler, others just
informational, all though are consumable via the module_info. You should note that both the key and the value must
be literal values, no evaluation occurs there.

4.2.4 Using Namespaces

The use clause is a way of importing functions into the namespace so that you can use them without prepending the
namespace. Use clauses are, by far, the most complex of the namespace clauses as they both manipulate and subset

4.2. Namespaces 17

Joxa Documentation, Release v0.1.0

the functions being imported while at the same time aliasing the function if desired. As you can see below each clause
may consist of a namespace name, or a list that contains a few subclauses. The sub-clause is always headed by a
namespace name, followed by an action, followed by the subject of that action. The action/subject may be repeated
to further refine and modify the imported values. The sub-clause action/subject may occur in any order. Even though
some do not make sense when used together. So, for example you could have the following

(use string)

(use (string :only (tokens/2)))

(use (string :exclude (substr/3
join/2
join/3)))

(use (string :rename ((substr/3 str-substring)
(join/2 str-join))))

(use (string :as str
:only (join/2

substr/3)))

(use (string :as str
:only (tokens/2)))

(use (string :as str
:exclude (substr/3

join/2
join/3)))

(use (string :as str
:joxify
:rename ((substr/3 str-substring)

(join/2 str-join))))

You should think about use clauses as a series of actions that occur from left to right. Lets take an example and work
through it. The following is a fairly complex example that highlights some things that we might want to do.

(use (string :exclude (substr/4 join/2)
:joxify
:rename ((sub-word/3 str-subword) (join/2 str-join))))

Lets break this down into actions.

1. The namespace declaration. In this case string, this goes to the namespace and gets a list of all the functions
that that namespace exports. That list of functions is then passed to the next ‘operation’.

2. Exclude, this excludes the specified functions from the function list that was imported. Every action/sub-clause
pair after this exclude will only operate on the functions that have not been excluded. The opposite of exclude
is only. Only subsets the list of functions to just those specified in the only clause.

3. Joxify, This does the exact same thing that joxify does in require. However, it does it only on the module name
and the functions that we currently have in the list. After this point the functions in the list can only be referred
to by the joxified name.

4. Rename. This does what you would think. It renames a function giving it a different name. This does this on the
list of functions being passed forward. In this example we are renaming sub-word/3 to str-subword. However if
we tried to rename substr/4 which we excluded it would have no effect since its not in the list of imports being
carried forward. NOTE note the joxification of sub-word/3. Since we specified joxify earlier we must must refer
to it as sub-word/3 instead of sub_word/3.

18 Chapter 4. The Joxa Language

Joxa Documentation, Release v0.1.0

4.2.5 Author’s Note

When you use require vs use is entirely up to you. Joxa is a young language and there has not yet been time to hash
out what is the best practice here. I have had the good fortune to code in may languages and several of those languages
have supported ‘import’ clause’s like use. In the best of those languages the general practice is to use the use clause
only when you are importing operators the require clause for everything else. In the case of Joxa I will define operators
as anything thats used in a conditional statement, including guards. The main thing you want to remember is that use
impairs locality of code just a bit (that is knowing where the code that is being executed is coming from). There are
times (like conditionals) when the clarity of the code is improved enough to make that locality hit worth while, but
in general thats not true. In the end, just remember that the more transparent code is the easier it is to maintain and
extend and choose use and require with an eye towards transparency.

4.3 Functions

4.3.1 &rest Arguments to Functions

Rest arguments in a language like Joxa, where arity is basically part of the namespace, take a bit of thought to get your
mind around. Basically, Joxa like Lisp has the ability to group all remaining arguments into a list at the discretion of
the function implementer. This changes the way those functions are called and perhaps referred to.

Defined Functions

In module defined functions rest arguments work like you would expect. For example:

(defn+ i-am-a-rest-fun (arg1 arg2 &rest arg3)
{arg1 arg2 arg3})

In this case, any time i-am-a-rest-fun is called, the arguments are collapsed down for the third argument. This happens
for any call that has more then three arguments.

In this case of namespaces i-am-a-rest-fun/3 can actually be referred to by any arity that is 3 or greater. For example
i-am-a-rest-fun/545 still refers to i-am-a-rest-fun/3 because those extra arguments are simply collapsed to the three.
With that in mind you could define i-am-a-rest-fun/2 without a problem. However, you could never define i-am-a-rest-
fun/5 because i-am-a-rest-fun/3 overrides anything with arguments three or greater. to give a concrete example, you
could define:

(defn+ i-am-a-rest-fun (arg1 arg2)
{arg1 arg2})

and it would be valid and make sense. However, you could not define

(defn+ i-am-a-rest-fun (arg1 arg2 arg3 arg4)
{arg1 arg2 arg3 arg4})

Because i-am-a-rest-fun/3 already fills that namespace completely.

Anonymous Functions

Anonymous functions work exactly like defined functions. I could do

(fn (one two &rest three)
{one two three})

I can then assign that to the variable foo and call foo as:

4.3. Functions 19

Joxa Documentation, Release v0.1.0

(foo 1 2 3 4 5 6 7 8 9)

and it would do the correct thing.

Variables that Refer to Functions

For the most part variables that reference rest functions work exactly like you would expect. However, in the case
where the ‘restful-ness’ of a variable can not be defined at compile time, a function is created that does the resolution
at run time. This mostly happens when variables are passed as arguments to functions. At the moment the argument
boundary can not be crossed, so when those variables are used as functions, they are wrapped in a function that does
the runtime resolution and calls the correct function with the correct args. This may affect performance.

Apply

Apply also works exactly as you would expect. Any resolvable rest call has the arguments handled correctly at compile
time. Any un-resolvable rest call has a function created to correctly handle the arguments at runtime.

Importing Rest Functions via Use

The use clause in module declarations take a bit of thinking. To refer to a function in a use clause use the actual arity.
In our function above you would use (use :only i-am-a-rest-fun/3)

4.4 Type Specs

4.4.1 Mutually Recursive Modules

In Joxa code must exist at compile time before it is called. That means that if you are compiling a module and it
calls other modules those other modules must exist to be called (at compile time). If they are not it is a build failure.
Unfortunately, this makes mutually recursive functions somewhat difficult. In general mutually recursive modules are
something to be avoided. However, at times they are needed and there is no way to get around that need. When this
occurs Joxa provides a facility to get around it. This is very similar to its forward declarations via defspecs. That way
is to define a spec for the remote function. Lets take a look at an example of this

(ns Joxa-exp-nmr-ns1)

(defn+ final ()
:got-it)

;; Forward declaration for ns2
(defspec Joxa-exp-nmr-ns2/recurse-ns1 () (erlang/any))

(defn+ recurse-ns2 ()
(joxa-test-nmr-ns2/recurse-ns1))

;; ======

(ns joxa-exp-nmr-ns2)

(defspec joxa-exp-nmr-ns1/final () (erlang/any))

(defn+ recurse-ns1 ()
(joxa-exp-nmr-ns1/final))

20 Chapter 4. The Joxa Language

Joxa Documentation, Release v0.1.0

Notice that joxa-exp-nmr-ns1 has a dependency on joxa-exp-nmr-ns2 and vice versa. In normal Joxa code this would
not be compilable because the code that is being called must be available before it is called. However, we have gotten
around this problem by providing remote defspecs. In joxa-exp-nmr-ns1 we pre-declare joxa-exp-nmr-ns2/recurse-ns1
while in joxa-exp-nmr-ns2 we pre-declare joxa-exp-nmr-ns1/final. This allows the Joxa compiler to check the function
against the specs instead of the real module. Of course, there is no way for the compiler to know if those functions
actually exist, so if you make a mistake you may actually get runtime errors. So be careful.

4.4. Type Specs 21

Joxa Documentation, Release v0.1.0

22 Chapter 4. The Joxa Language

CHAPTER 5

Standard Library

5.1 Core

5.1.1 !=

This is a ‘not equal’ operator for Joxa. It is basically equivelent to (not (= ...)) or the erlang =:=

Example

joxa-is> (joxa-core/!= 1 2)
:true

joxa-is> (joxa-core/!= 1 1)
:false

5.1.2 lte

Less then or equal to. Basically equivalent to =<. However this has some issue in Joxa’s syntax but lte solves these
problems.

Example

joxa-is> (joxa-core/lte 1 2)
:true

joxa-is> (joxa-core/lte 1 1)
:true

joxa-is> (joxa-core/lte 10 1)
:false

5.1.3 gte

Greater then or equal to. Basically equivalent to >=. However this has some issue in Joxa’s syntax but gte solves these
problems.

23

Joxa Documentation, Release v0.1.0

Example

joxa-is> (joxa-core/gte 1 2)
:false

joxa-is> (joxa-core/gte 1 1)
:true

joxa-is> (joxa-core/gte 10 1)
:true

5.1.4 and

This is a boolean and operation. The main difference between this and erlang/and/2 is that this allows an unlimited
number of arguments, in the tradition of lisp.

Example

joxa-is> (joxa-core/and :true :true :false)
:false

joxa-is> (joxa-core/and :true :true :true (joxa-core/!= 1 2))
:true

5.1.5 or

This is a boolean or operation. The main difference between this and erlang/or/2 is that this allows an unlimited
number of arguments, in the tradition of lisp.

Example

joxa-is> (joxa-core/or :true :true :false)
:true

joxa-is> (joxa-core/or :true :true :true (joxa-core/!= 1 2))
:true

joxa-is> (joxa-core/or :false :false :false)
:false

5.1.6 +

This is the multi-argument version of erlang/+. It does a simple arithmetic addition for an unlimited number of
arguments.

Example

joxa-is> (joxa-core/+ 1 2 3 4 5 6 7)
28

24 Chapter 5. Standard Library

Joxa Documentation, Release v0.1.0

5.1.7 -

This is the multi-argument version of erlang/-. It does a simple arithmetic subtraction for an unlimited number of
arguments.

Example

joxa-is> (joxa-core/+ 1 2 3 4 5 6 7)
-26

5.1.8 incr

This increments a numeric value (either float or integer)

Example

joxa-is> (joxa-core/incr 1)
2

joxa-is> (joxa-core/incr 1.0)
2.0

5.1.9 decr

This decrements a numeric value (either float or integer)

Example

joxa-is> (joxa-core/decr 1)
0

joxa-is> (joxa-core/incr 1.0)
0.0

5.1.10 if

if test-form then-form else-form => result*

Arguments and Values

test-form a form.

then-form a form.

else-form a form.

results if the test-form yielded true, the values returned by the then-form; otherwise, the values returned by the else-
form.

5.1. Core 25

Joxa Documentation, Release v0.1.0

Description

if allows the execution of a form to be dependent on a single test-form.

First test-form is evaluated. If the result is true, then then-form is selected; otherwise else-form is selected. Whichever
form is selected is then evaluated.

Examples

joxa-is> (joxa-core/if :true 1 2)
1
joxa-is> (joxa-core/if :false 1 2)
2

5.1.11 when

when test-form form* => result*

Arguments and Values

test-form a form.

forms an implicit do.

results the values of the forms in a when form if the test-form yields :true or in an unless form if the test-form yields
:false; otherwise :ok.

Description

when allows the execution of forms to be dependent on a single test-form.

In a when form, if the test-form yields true, the forms are evaluated in order from left to right and the values returned
by the forms are returned from the when form. Otherwise, if the test-form yields false, the forms are not evaluated,
and the when form returns :ok.

Examples

joxa-is> (joxa-core/when :true :hello)
hello
joxa-is> (joxa-core/when :false :hello)
ok
joxa-is> (joxa-core/when :true (io/format "1") (io/format "2") (io/format "3"))
123

5.1.12 unless

unless test-form form* => result*

26 Chapter 5. Standard Library

Joxa Documentation, Release v0.1.0

Arguments and Values

test-form a form.

forms an implicit do.

results the values of the forms in a when form if the test-form yields :true or in an unless form if the test-form yields
:false; otherwise :ok.

Description:

unless allows the execution of forms to be dependent on a single test-form.

In an unless form, if the test-form yields false, the forms are evaluated in order from left to right and the values returned
by the forms are returned from the unless form. Otherwise, if the test-form yields :false, the forms are not evaluated,
and the unless form returns :ok.

Examples

joxa-is> (joxa-core/unless :true :hello)
ok
joxa-is> (joxa-core/unless :false :hello)
hello
joxa-is> (joxa-core/unless :true (io/format "1") (io/format "2") (io/format "3"))
ok
joxa-is> (joxa-core/unless :false (io/format "1") (io/format "2") (io/format "3"))
123

5.1.13 gensym

gensym => new-atom
gensym x => new-atom

Arguments and Values

x a string.

new-symbol a fresh, atom.

Description

Creates and returns a fresh, atom.

The name of the new-symbol is the concatenation of a prefix, which defaults to “G”, and a suffix, which is a randomly
generated number.

If x is supplied, then that string is used as a prefix instead of “G” for this call to gensym only.

Examples

joxa-is> (joxa-core/gensym)
'#:GAEECC9'
joxa-is> (joxa-core/gensym "T")
'#:|T66BA871|'

5.1. Core 27

Joxa Documentation, Release v0.1.0

5.1.14 try

5.1.15 let-match

5.1.16 define

define name value => form

Arguments and Values

name an atom that represents the defined name

forms an arbitrary value

form a new defmacro that evaluates to the value

Description:

Defines a new macro that creates a compile time mapping between the name and the value.

Examples

joxa-is> (joxa-core/define :true :hello)
ok
joxa-is> (joxa-core/unless :false :hello)
hello
joxa-is> (joxa-core/unless :true (io/format "1") (io/format "2") (io/format "3"))
ok
joxa-is> (joxa-core/unless :false (io/format "1") (io/format "2") (io/format "3"))
123

5.2 Lists

dolist

hd

tl

foldl

map

5.3 Records

Records in Joxa are equivalent and compatible with records in Erlang. However, like many things in Joxa they are
used in very different ways.

Before we get started there are a few things to keep in mind. Records are designed to be contained in a single
namespace. Defining multiple records in the same namespace will cause the record system to stomp on itself. That is
the record macros generate many functions and macros to access various parts of the record. With multiple records in
the same namespace those function names that are generated will conflict.

28 Chapter 5. Standard Library

Joxa Documentation, Release v0.1.0

5.3.1 Overview

Having a namespace per record is no big deal sense you can have multiple namespaces per file. So to get started lets
look at a trivial, contrived example

(ns example-person
(require erlang lists)
(use (joxa-records :only (defrecord/2))))

(joxa-records/defrecord+ person name age {sex male}
{address "unknown"} city)

(ns example-walker
(require example-person))

(defn+ create-irish-walker ()
(example-person/make

"Robert"
1024
:male
"Somewhere in Ireland"))

(defn+ is-robert? (person)
(case person

((example-person/t name "Robert")
:true)

(_
:false)))

(defn+ is-robert-male? (person)
(case person
((example-person/t name "Robert"

sex male)
:true)

(_
:false)))

(defn+ get-name-age-address (person)
(example-person/let person

(name local-name
age local-age

address local-address)
{local-name local-age local-address}))

This gives a quick overview of some of the things you can do with records. Now lets jump into some detail.

5.3.2 Definition

joxa-records is the namespace that contains the record system for Joxa. The two functions that you will interact the
most are defrecord and defrecord+. defrecord and defrecord+ both have the exact same api. Just like with defn and
defmacro the + added to defrecord means that the record functions and macros will be exported.

defrecord takes a name for the record followed by a list of field descriptions. In our example we called our record
person

5.3. Records 29

Joxa Documentation, Release v0.1.0

(joxa-records/defrecord+ person name age {sex male}
{address "unknown"} city)

We then followed it up with the fields name, age, sex, address and city. As you can see, the sex and address fields are a
bit different. That is because in these cases we are providing a default value. So in record definitions you can provide
just a name, or a name and a default value. Just as a note, the name must be an atom and the value a literal.

This is really all there is to it. The defrecord macro generates a bunch of functions and macros used to interact with
the record.

5.3.3 Creating Records

Once the record is defined we want to create it in the code that is making use of the record. When a record is defined
two functions are defined that are used to create records. The first is the make function. The second is the make-fields
function.

Lets start by looking at the make function

(example-person/make
"Robert"
1024
:male
"Somewhere in Ireland"),

The make function is fairly strait forward, simple pass values for the record in the order in which those fields where
defined in the defrecord definition. In this case you must pass a value for every field in the record.

The make fields function is a bit more flexible. In this case you call make-fields with a property list that provides a
value for each field that you are interested in defining a value for. Undefined fields will simple get the value undefined
or the default value specified on record definition. As we can see in the following example

(example-person/make-fields
[{:name "Robert"}
{:age 1024}
{:address "Somewhere in Ireland"}])

We do not provide a value for the sex field or the city field. In the case of sex the value will default to mail while in the
case of city it will default to undefined.

5.3.4 Getters and Setters

defrecord generates several different ways of getting and setting values from a function. The most strait forward of
these is the field name accessors. For each field defined Joxa generates a function to get and set the value. The getter is
a function with the name of the field that takes a single value (the record). The setter is the name of the field post-fixed
by a ! that takes the record as the first argument as the new value as the second argument. So for example if we wanted
to get and set the age field of the person record we could do the following

(let (age (example-person/age foo-record))
(example-person/age! foo-record (+ age 1)))

defrecord also creates a set of anonymous getters and setters that take the name of the field as an atom. These are the
element and element! functions. To accomplish the same thing we did above, but with these anonymous functions we
could do the following

(let (age (example-person/element :age foo-record))
(example-person/element! foo-record :age (+ age 1)))

30 Chapter 5. Standard Library

Joxa Documentation, Release v0.1.0

This makes it quite a bit easier to pragmatically manipulate a record.

Finally, the record system provides a way for the use to get access to several fields at the same time. This is accom-
plished through a specialized let function. So lets say we wanted to get the name, age and address fields from the
record all at once. We could use the generated let as follows

(example-person/let person-record
(name local-name
age local-age
address local-address)

{local-name local-age local-address})

The first argument is the record that will have fields extracted. The second argument is a list of field name, reference
name pairs while the rest is the body of the let. So in this case the value of the name field in the person-record will be
bound to the reference local-name and be made available in the body of the let. The same is true for age and address.

5.3.5 Pattern Matching

Joxa has pattern matching and, of course, you want to be able to trivially match on records. To that end the Joxa record
system provides a macro that generated a matchable thing. That macro is the t macro. The t macro takes a list of field
name, data pairs that are used to construct a pattern for that record. Lets look at some examples. In the first example
we want to create something that will match on a record with the name “Robert” and nothing else

(case person-rec
((example-person/t name "Robert")

:matched)
(_

:did-not-match))

If we want to match on more fields we can simple add more to the field/value list

(case person
((example-person/t name "Robert"

sex male)
:matched)

(_
:did-not-match))

or even

(case person
((example-person/t name "Robert"

sex :male
city :chicago)

:matched)
(_

:did-not-match)))

5.3.6 Meta Data

Finally the record system wants to give you the ability to do unanticipated things when the need arises. So two
functions are defined to give you metadata data about the record. These functions are field-info/0 and field-info/1.
Field info is a tuple of three values that gives you the name of the field, the position of the field in the tuple and its
default value. In our example-person record the result of field-info/0 is

5.3. Records 31

Joxa Documentation, Release v0.1.0

[{name,2,undefined},
{age,3,undefined},
{sex,4,male},
{address,5,"Somewhere in Ireland"},
{city,6,undefined}]

As you can see it gives you metadata for all the fields. field-info/1 returns the same metadata but only for a single field.
So if we called field-info with name we would get

{name,2,undefined}

5.3.7 Future Directions

There is still a lot that can be added to records. Things like

• Pre and Post hook functions

• Types and automatic type validators

and more. However, the core defined here shouldn’t change significantly.

32 Chapter 5. Standard Library

CHAPTER 6

Joxa Style Guide

Copyright (C) 2012 Eric B. Merritt

CC BY-NC-SA 3.0

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

This work is derived from Riastradh’s Lisp Style Rules by Talor R. Cambell

This is document describes a recommended style for Joxa. Its an distilled from the best practices of the existing Lisp
world and the lessons learned in Joxa itself. Its not meant to be a rigid set of rules for the style extremists. It is meant
to help you get the most out of Joxa.

This guide is written primarily as a collection of guidelines, with rationale for each rule (If a guideline is missing
rationale, please inform the author!). Although a casual reader might go through and read the guidelines without the
rationale, such a reader would derive little value from this guide. In order to apply the guidelines meaningfully, their
spirit must be understood; the letter of the guidelines serves only to hint at the spirit. The rationale is just as important
as the guideline.

6.1 Standard Rules

These are the standard rules for formatting Lisp code; they are repeated here for completeness, although they are surely
described elsewhere. These are the rules implemented in Emacs Lisp modes, and utilities such as Paredit.

6.1.1 Parentheses

Terminology

This guide avoids the term parenthesis except in the general use of parentheses or parenthesized, because the word’s
generally accepted definition, outside of the programming language, is a statement whose meaning is peripheral to the
sentence in which it occurs, and not the typographical symbols used to delimit such statements.

The balanced pair of typographical symbols that mark parentheses in English text are round brackets, i.e. (and).
There are several other balanced pairs of typographical symbols, such as square brackets (commonly called simply
brackets in programming circles), i.e. [and]; curly braces (sometimes called simply braces), i.e. { and }; angle
brackets (sometimes brokets (for broken brackets)), i.e. < and >.

In any balanced pair of typographical symbols, the symbol that begins the region delimited by the symbols is called
the opening bracket or the left bracket, such as (or‘[‘ or { or <. The symbol that ends that region is called the right
bracket or the closing bracket, such as > or } or] or).

33

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://mumble.net/~campbell/scheme/style.txt

Joxa Documentation, Release v0.1.0

6.1.2 Spacing

If any text precedes an opening bracket or follows a closing bracket, separate that text from that bracket with a space.
Conversely, leave no space after an opening bracket and before following text, or after preceding text and before a
closing bracket.

Unacceptable

(foo(bar baz)quux)
(foo (bar baz) quux)

Acceptable:

(foo (bar baz) quux)

Rationale

This is the same spacing found in standard typography of western text. It is more aesthetically pleasing.

6.1.3 Line Separation

Absolutely do not place closing brackets on their own lines.

Unacceptable

(define (factorial x)
(if (< x 2)

1
(* x (factorial (- x 1

)
)

)
)

)

Acceptable

(define (factorial x)
(if (< x 2)

1
(* x (factorial (- x 1)))))

Rationale

The parentheses grow lonely if their closing brackets are all kept separated and segregated.

34 Chapter 6. Joxa Style Guide

Joxa Documentation, Release v0.1.0

Exceptions to the Above Rule Concerning Line Separation

Do not heed this section unless you know what you are doing. Its title does not make the unacceptable example above
acceptable.

When commenting out fragments of expressions with line comments, it may be necessary to break a line before a
sequence of closing brackets

(define (foo bar)
(list (frob bar)

(zork bar)
;; (zap bar)
))

Finally, it is acceptable to break a line immediately after an opening bracket and immediately before a closing bracket
for very long lists, especially in files under version control. This eases the maintenance of the lists and clarifies version
diffs. Example

(define colour-names ;Add more colour names to this list!
'(
blue
cerulean
green
magenta
purple
red
scarlet
turquoise
))

6.1.4 Parenthetical Philosophy

The actual bracket characters are simply lexical tokens to which little significance should be assigned. Lisp program-
mers do not examine the brackets individually, or, Azathoth forbid, count brackets; instead they view the higher-level
structures expressed in the program, especially as presented by the indentation. Lisp is not about writing a sequence
of serial instructions; it is about building complex structures by summing parts. The composition of complex struc-
tures from parts is the focus of Lisp programs, and it should be readily apparent from the Lisp code. Placing brackets
haphazardly about the presentation is jarring to a Lisp programmer, who otherwise would not even have seen them for
the most part.

Indentation and Alignment

The operator of any form, i.e. the first subform following the opening round bracket, determines the rules for indenting
or aligning the remaining forms. Many names in this position indicate special alignment or indentation rules; these
are special operators, macros, or procedures that have certain parameter structures.

If the first subform is a non-special name, however, then if the second subform is on the same line, align the starting
column of all following subforms with that of the second subform. If the second subform is on the following line,
align its starting column with that of the first subform, and do the same for all remaining subforms.

In general, Emacs will indent Lisp code correctly. Run C-M-q (indent-sexp) on any code to ensure that it is indented
correctly, and configure Emacs so that any non-standard forms are indented appropriately.

6.1. Standard Rules 35

Joxa Documentation, Release v0.1.0

Unacceptable

(+ (sqrt -1)
(* x y)
(+ p q))

(+
(sqrt -1)
(* x y)
(+ p q))

Acceptable

(+ (sqrt -1)
(* x y)
(+ p q))

(+
(sqrt -1)
(* x y)
(+ p q))

Rationale

The columnar alignment allows the reader to follow the operands of any operation straightforwardly, simply by scan-
ning downward or upward to match a common column. Indentation dictates structure; confusing indentation is a
burden on the reader who wishes to derive structure without matching parentheses manually.

Non-Symbol Indentation and Alignment

The above rules are not exhaustive; some cases may arise with strange data in operator positions.

6.1.5 Lists

Unfortunately, style varies here from person to person and from editor to editor. Here are some examples of possible
ways to indent lists whose operators are lists:

Questionable

((car x) ;Requires hand indentation.
(cdr x)
foo)

((car x) (cdr x) ;GNU Emacs
foo)

Preferable

36 Chapter 6. Joxa Style Guide

Joxa Documentation, Release v0.1.0

((car x) ;Any Emacs
(cdr x)
foo)

Rationale

The operands should be aligned, as if it were any other procedure call with a name in the operator position; anything
other than this is confusing because it gives some operands greater visual distinction, allowing others to hide from the
viewer’s sight. For example, the questionable indentation

((car x) (cdr x)
foo)

can make it hard to see that foo and (cdr x) are both operands here at the same level. However, GNU Emacs will
generate that indentation by default.

6.1.6 Strings

If the form in question is meant to be simply a list of literal data, all of the subforms should be aligned to the same
column, irrespective of the first subform.

Unacceptable

("foo" "bar" "baz" "quux" "zot"
"mumble" "frotz" "gargle" "mumph")

Questionable, but acceptable

(3 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4
3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3)

Acceptable

("foo" "bar" "baz" "quux" "zot"
"mumble" "frotz" "gargle" "mumph")

("foo"
"bar" "baz" "quux" "zot"
"mumble" "frotz" "gargle" "mumph")

Rationale

Seldom is the first subform distinguished for any reason, if it is a literal; usually in this case it indicates pure data,
not code. Some editors and pretty-printers, however, will indent unacceptably in the example given unless the second
subform is on the next line anyway, which is why the last way to write the fragment is usually best.

6.1. Standard Rules 37

Joxa Documentation, Release v0.1.0

6.1.7 Names

Naming is subtle and elusive. Bizarrely, it is simultaneously insignificant, because an object is independent of and
unaffected by the many names by which we refer to it, and also of supreme importance, because it is what programming
– and, indeed, almost everything that we humans deal with – is all about. A full discussion of the concept of name lies
far outside the scope of this document, and could surely fill not even a book but a library.

Symbolic names are written with English words separated by hyphens. Scheme and Common Lisp both fold the case
of names in programs; consequently, camel case is frowned upon, and not merely because it is ugly. Underscores are
unacceptable separators except for names that were derived directly from a foreign language without translation.

Unacceptable

XMLHttpRequest
foreach
append_map

Acceptable

xml-http-request
for-each
append-map

6.1.8 Funny Characters

Question Marks: Predicates

Affix a question mark to the end of a name for a procedure whose purpose is to ask a question of an object and to yield
a boolean answer. Such procedures are called predicates. Do not use a question mark if the procedure may return any
object other than a boolean.

Examples .. code-block:: clojure

pair? procedure? proper-list?

Pronounce the question mark as if it were the isolated letter p. For example, to read the fragment (pair? object) aloud,
say: pair-pee object.

Exclamation Marks: Destructive Operations

Affix an exclamation mark to the end of a name for a procedure (or macro) whose primary purpose is to modify an
object. This is common in lisps that support destructive operations. Joxa, of course, does not. However, this syntax is
useful in situations where the intent is to modify an object.

Examples

set-car! append!

Pronounce the exclamation mark as bang. For example, to read the fragment (append! list tail) aloud, say: append-
bang list tail.

38 Chapter 6. Joxa Style Guide

Joxa Documentation, Release v0.1.0

Asterisks: Variants, Internal Routines

Affix an asterisk to the end of a name to make a variation on a theme of the original name.

Example

let -> let*

Prefer a meaningful name over an asterisk; the asterisk does not explain what variation on the theme the name means.

with- and call-with-: Dynamic State and Cleanup

Prefix WITH- to any procedure that establishes dynamic state and calls a nullary procedure, which should be the last
(required) argument. The dynamic state should be established for the extent of the nullary procedure, and should be
returned to its original state after that procedure returns.

Examples

with-input-from-file
with-output-to-file

Prefix call-with- to any procedure that calls a procedure, which should be its last argument, with some arguments, and
is either somehow dependent upon the dynamic state or continuation of the program, or will perform some action to
clean up data after the procedure argument returns. Generally, CALL-WITH- procedures should return the values that
the procedure argument returns, after performing the cleaning action.

call-with-input-file and call-with-output-file both accept a pathname and a procedure as an argument, open that path-
name (for input or output, respectively), and call the procedure with one argument, a port corresponding with the file
named by the given pathname. After the procedure returns, call-with-input-file and call-with-output-file close the file
that they opened, and return whatever the procedure returned.

Generally, the distinction between these two classes of procedures is that call-with-... procedures should not establish
fresh dynamic state and instead pass explicit arguments to their procedure arguments, whereas with-... should do the
opposite and establish dynamic state while passing zero arguments to their procedure arguments.

6.1.9 Comments

Write heading comments with at least four semicolons; see also the section below titled ‘Outline Headings’.

Write top-level comments with three semicolons.

Write comments on a particular fragment of code before that fragment and aligned with it, using two semicolons.

Write margin comments with one semicolon.

The only comments in which omission of a space between the semicolon and the text is acceptable are margin com-
ments.

Examples

;;;; Frob Grovel

;;; This section of code has some important implications:
;;; 1. Foo.
;;; 2. Bar.
;;; 3. Baz.

(defn (fnord zarquon)
;; If zob, then veeblefitz.

6.1. Standard Rules 39

Joxa Documentation, Release v0.1.0

(quux zot
mumble ;Zibblefrotz.
frotz))

6.2 General Layout

Contained in the rationale for some of the following rules are references to historical limitations of terminals and
printers, which are now considered aging cruft of no further relevance to today’s computers. Such references are
made only to explain specific measures chosen for some of the rules, such as a limit of eighty columns per line, or
sixty-six lines per page. There is a real reason for each of the rules, and this real reason is not intrinsically related to
the historical measures, which are mentioned only for the sake of providing some arbitrary measure for the limit.

6.2.1 File Length

If a file exceeds five hundred twelve lines, begin to consider splitting it into multiple files. Do not write program files
that exceed one thousand twenty-four lines. Write a concise but descriptive title at the top of each file, and include no
content in the file that is unrelated to its title.

Rationale

Files that are any larger should generally be factored into smaller parts. (One thousand twenty-four is a nicer number
than one thousand.) Identifying the purpose of the file helps to break it into parts if necessary and to ensure that
nothing unrelated is included accidentally.

6.2.2 Top-Level Form Length

Do not write top-level forms that exceed twenty-one lines, except for top-level forms that serve only the purpose of
listing large sets of data. If a procedure exceeds this length, split it apart and give names to its parts. Avoid names
formed simply by appending a number to the original procedure’s name; give meaningful names to the parts.

Rationale

Top-level forms, especially procedure definitions, that exceed this length usually combine too many concepts under
one name. Readers of the code are likely to more easily understand the code if it is composed of separately named
parts. Simply appending a number to the original procedure’s name can help only the letter of the rule, not the
spirit, however, even if the procedure was taken from a standard algorithm description. Using comments to mark the
code with its corresponding place in the algorithm’s description is acceptable, but the algorithm should be split up in
meaningful fragments anyway.

Rationale for the number twenty-one: Twenty-one lines, at a maximum of eighty columns per line, fits in a GNU
Emacs instance running in a 24x80 terminal. Although the terminal may have twenty-four lines, three of the lines are
occupied by GNU Emacs: one for the menu bar (which the author of this guide never uses, but which occupies a line
nevertheless in a vanilla GNU Emacs installation), one for the mode line, and one for the minibuffer’s window. The
writer of some code may not be limited to such a terminal, but the author of this style guide often finds it helpful to
have at least four such terminals or Emacs windows open simultaneously, spread across a twelve-inch laptop screen,
to view multiple code fragments.

40 Chapter 6. Joxa Style Guide

Joxa Documentation, Release v0.1.0

6.2.3 Line Length

Do not write lines that exceed eighty columns, or if possible seventy-two.

Rationale

Following multiple lines that span more columns is difficult for humans, who must remember the line of focus and
scan right to left from the end of the previous line to the beginning of the next line; the more columns there are, the
harder this is to do. Sticking to a fixed limit helps to improve readability.

Rationale for the numbers eighty and seventy-two: It is true that we have very wide screens these days, and we are
no longer limited to eighty-column terminals; however, we ought to exploit our wide screens not by writing long
lines, but by viewing multiple fragments of code in parallel, something that the author of this guide does very often.
Seventy-two columns leave room for several nested layers of quotation in email messages before the code reaches
eighty columns. Also, a fixed column limit yields nicer printed output, especially in conjunction with pagination; see
the section ‘Pagination’ below.

6.2.4 Blank Lines

Separate each adjacent top-level form with a single blank line (i.e. two line breaks). Do not place blank lines in the
middle of a procedure body, except to separate internal definitions; if there is a blank line for any other reason, split
the top-level form up into multiple ones.

Rationale

More than one blank line is distracting and sloppy. If the two concepts that are separated by multiple blank lines
are really so distinct that such a wide separator is warranted, then they are probably better placed on separate pages
anyway; see the next section, Pagination.

6.2.5 Dependencies

When writing a file or module, minimize its dependencies. If there are too many dependencies, consider breaking the
module up into several parts, and writing another module that is the sum of the parts and that depends only on the
parts, not their dependencies.

Rationale

A fragment of a program with fewer dependencies is less of a burden on the reader’s cognition. The reader can more
easily understand the fragment in isolation; humans are very good at local analyses, and terrible at global ones.

6.2.6 Naming

This section requires an elaborate philosophical discussion which the author is too ill to have the energy to write at
this moment.

Compose concise but meaningful names. Do not cheat by abbreviating words or using contractions.

6.2. General Layout 41

Joxa Documentation, Release v0.1.0

Rationale

Abbreviating words in names does not make them shorter; it only makes them occupy less screen space. The reader
still must understand the whole long name. This does not mean, however, that names should necessarily be long; they
should be descriptive. Some long names are more descriptive than some short names, but there are also descriptive
names that are not long and long names that are not descriptive. Here is an example of a long name that is not
descriptive, from SchMUSE, a multi-user simulation environment written in MIT Scheme:

frisk-descriptor-recursive-subexpr-descender-for-frisk-descr-env

Not only is it long (sixty-four characters) and completely impenetrable, but halfway through its author decided to
abbreviate some words as well!

Do not write single-letter variable names. Give local variables meaningful names composed from complete English
words.

Rationale

It is tempting to reason that local variables are invisible to other code, so it is OK to be messy with their names. This
is faulty reasoning: although the next person to come along and use a library may not care about anything but the
top-level definitions that it exports, this is not the only audience of the code. Someone will also want to read the code
later on, and if it is full of impenetrably terse variable names without meaning, that someone will have a hard time
reading the code.

Give names to intermediate values where their expressions do not adequately describe them.

Rationale

An expression is a term that expresses some value. Although a machine needs no higher meaning for this value, and
although it should be written to be sufficiently clear for a human to understand what it means, the expression might
mean something more than just what it says where it is used. Consequently, it is helpful for humans to see names
given to expressions.

Example

A hash table maps foos to bars; (dict/get dict foo :false) expresses the datum that dict maps foo to, but that expression
gives the reader no hint of any information concerning that datum. (let ((bar (dict/get dict foo :false))) ...) gives a
helpful name for the reader to understand the code without having to find the definition of HASH-TABLE.

Index variables such as i and j, or variables such as A and D naming the car and cdr of a pair, are acceptable only if
they are completely unambiguous in the scope.

Avoid functional combinators, or, worse, the point-free (or point-less) style of code that is popular in the Haskell world.
At most, use function composition only where the composition of functions is the crux of the idea being expressed,
rather than simply a procedure that happens to be a composition of two others.

Rationale

Tempting as it may be to recognize patterns that can be structured as combinations of functional combinators – say,
‘compose this procedure with the projection of the second argument of that other one’, or (compose foo (project 2
bar)) –, the reader of the code must subsequently examine the elaborate structure that has been built up to obscure the
underlying purpose. The previous fragment could have been written (fn (a b) (foo (bar b))), which is in fact shorter,
and which tells the reader directly what argument is being passed on to what, and what argument is being ignored,
without forcing the reader to search for the definitions of foo and bar or the call site of the final composition. The

42 Chapter 6. Joxa Style Guide

Joxa Documentation, Release v0.1.0

explicit fragment contains substantially more information when intermediate values are named, which is very helpful
for understanding it and especially for modifying it later on.

The screen space that can be potentially saved by using functional combinators is made up for by the cognitive effort
on the part of the reader. The reader should not be asked to search globally for usage sites in order to understand a local
fragment. Only if the structure of the composition really is central to the point of the narrative should it be written as
such. For example, in a symbolic integrator or differentiator, composition is an important concept, but in most code
the structure of the composition is completely irrelevant to the real point of the code.

If a parameter is ignored, give it a meaningful name nevertheless and say that it is ignored; do not simply call it
‘ignored’.

When naming top-level bindings, assume namespace partitions unless in a context where they are certain to be absent.
Do not write explicit namespace prefixes, such as foo/bar for an operation BAR in a module foo, unless the names will
be used in a context known not to have any kind of namespace partitions.

Rationale

Explicit namespace prefixes are ugly, and lengthen names without adding much semantic content. Joxa has its package
system to separate the namespaces of names. It is better to write clear names which can be disambiguated if necessary,
rather than to write names that assume some kind of disambiguation to be necessary to begin with. Furthermore,
explicit namespace prefixes are inadequate to cover name clashes anyway: someone else might choose the same
namespace prefix. Relegating this issue to a module system removes it from the content of the program, where it is
uninteresting.

6.2.7 Comments

Write comments only where the code is incapable of explaining itself. Prefer self-explanatory code over explanatory
comments. Avoid ‘literate programming’ like the plague.

Rationale

If the code is often incapable of explaining itself, then perhaps it should be written in a more expressive language.
This may mean using a different programming language altogether, or, since we are talking about Lisp, it may mean
simply building a combinator language or a macro language for the purpose.

6.3 Attribution

This guide was derived from

Riastradh’s Lisp Style Rules by Taylor R. Campbell

licensed under:

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License

6.3. Attribution 43

http://creativecommons.org/licenses/by-nc-sa/3.0/

Joxa Documentation, Release v0.1.0

44 Chapter 6. Joxa Style Guide

CHAPTER 7

Contributing

How to contribute to your project. This section should include (in detail):

• How to check out your project’s source code.

• Which branch to use for development.

• What style rules to follow when adding code.

• How to run all of the project’s unit tests, integration tests, etc.

• An example workflow.

45

Joxa Documentation, Release v0.1.0

46 Chapter 7. Contributing

CHAPTER 8

Getting Help

Joxa is in an early stage. So, for now, the Joxa community is the Erlware community. We use the erlware-questions
and erlware-dev mailing lists (see below). We also make heavy use of the github issues and wiki. Make use of all
these resources for your information needs.

8.1 Resources

1. [Erlware Questions](http://groups.google.com/group/erlware-questions) Is a general list for questions and dis-
cussion around Erlware projects, including Joxa. It should be your first stop if you have questions.

2. [Erlware Dev](http://groups.google.com/group/erlware-dev) If you are interested in developing and contributing
to an Erlware project, including Joxa, this is the place you should go.

3. [Joxa Issues](https://github.com/erlware/joxa/issues)

4. [Joxa Wiki](https://github.com/erlware/joxa/wiki)

47

http://groups.google.com/group/erlware-questions
http://groups.google.com/group/erlware-dev
https://github.com/erlware/joxa/issues
https://github.com/erlware/joxa/wiki

Joxa Documentation, Release v0.1.0

48 Chapter 8. Getting Help

CHAPTER 9

Frequently Asked Questions

Joxa is a very small functional language. Its actually designed less to be a language as a tool set in which to build
domain specific languages through the use of macros and libraries.

Though it is based on the Erlang VM it is not, and has no intention of being, Erlang.

9.1 What is the difference between Joxa and LFE (both Lisps for the
Erlang VM)

This is best explained in the following post: http://blog.ericbmerritt.com/2012/02/21/differences-between-joxa-and-
lfe.html

9.2 How Do You Create Mutually Recursive Functions

All functions in Joxa have to be declared before they can be used. For recursive functions this works fine, however,
for two functions that recurse on each other there doesn’t seem to be much you can do.

9.3 Type Specs are your answer

Do a defspec of the function before using it. Specs, aside from providing type information to the compiler, also serve
as a pre-declaration. For example, lets say you had this function:

(defn even? (number)
(case number

(0
:true)

(_
(odd? (- (erlang/abs number) 1)))))

(defn odd? (number)
(case number

(0
:false)

(_
(even? (- (erlang/abs number) 1)))))

49

http://blog.ericbmerritt.com/2012/02/21/differences-between-joxa-and-lfe.html
http://blog.ericbmerritt.com/2012/02/21/differences-between-joxa-and-lfe.html

Joxa Documentation, Release v0.1.0

This obviously wont work because odd? will not be declared when even? is defined. You can get around this problem
by declaring a defspec for odd?.

(defspec odd? ((erlang/integer)) (erlang/boolean))

(defn even? (number)
(case number

(0
:true)

(_
(odd? (- (erlang/abs number) 1)))))

(defn odd? (number)
(case number

(0
:false)

(_
(even? (- (erlang/abs number) 1)))))

With this it works because you have declared your intent to implement odd? on which even? depends.

9.4 Will compiler.jxa ever be able to use macros?

Probably not, its a problem in the erts code loading scheme. Macros take iterative compilation that is, each form needs
to be available at compile time so you have to compile each form and load it individually. When you load the compiler,
it overrides the joxa.compiler module currently loaded and since the new thing is incomplete it breaks.

I think there might be some possibility using of the new/old positions in the code loader but that is a long shot. So
for the compiler, and the compiler only, macros are not usable. Thats why the bootstrap flag is there it aborts iterative
compilation and just does it all in one fell swoop.

50 Chapter 9. Frequently Asked Questions

CHAPTER 10

Indices and tables

• genindex

• search

51

	Introduction
	Examples

	Install
	Quick Start
	The Joxa Language
	Special Forms
	Namespaces
	Functions
	Type Specs

	Standard Library
	Core
	Lists
	Records

	Joxa Style Guide
	Standard Rules
	General Layout
	Attribution

	Contributing
	Getting Help
	Resources

	Frequently Asked Questions
	What is the difference between Joxa and LFE (both Lisps for the Erlang VM)
	How Do You Create Mutually Recursive Functions
	Type Specs are your answer
	Will compiler.jxa ever be able to use macros?

	Indices and tables

